

Object Oriented Programming
COURSE 2

P Veera Venkata Durga PraSad
DEPARTMENT OF COMPUTER SCIENCE (AWDC KKD)

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2

Computer Science Minor:

III Semester Course 2:

 Object Oriented Programming using Java
UNIT-I

OOPs Concepts and Java Programming: Introduction to Object-Oriented concepts,

procedural and object-oriented programming paradigm

Java programming: An Overview of Java, Java Environment, Data types, Variables,

constants, scope and life time of variables, operators, type conversion and casting, Accepting

Input from the Keyboard, Reading Input with Java.util.Scanner Class, Displaying Output with

System.out.printf(), Displaying Formatted Output with String.format(), Control Statements

UNIT-II

Arrays, Command Line Arguments, Strings-String Class Methods

Classes & Objects: Creating Classes, declaring objects, Methods, parameter passing, static

fields and methods, Constructors, and ‘this’ keyword, overloading methods and access

Inheritance: Inheritance hierarchies, super and subclasses, member access rules, ‘super’

keyword, preventing inheritance: final classes and methods, the object class and its

methods; Polymorphism: Dynamic binding, method overriding, abstract classes and

methods;

UNIT-III

Interface: Interfaces VS Abstract classes, defining an interface, implement interfaces,

accessing implementations through interface references, extending interface;

Packages: Defining, creating and accessing a package, understanding CLASSPATH, importing

packages.

Exception Handling: Benefits of exception handling, the classification of exceptions,

exception hierarchy, checked exceptions and unchecked exceptions, usage of try, catch,

throw, throws and finally, rethrowing exceptions, exception specification, built in

exceptions, creating own exception sub classes.

UNIT-IV

Multithreading: Differences between multiple processes and multiple threads, thread states,

thread life cycle, creating threads, interrupting threads, thread priorities, synchronizing

threads, inter thread communication.

Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams,

Reading console Input and Writing Console Output, File class, Reading and writing Files, The

Console class, Serialization

UNIT-V

GUI Programming with Swing- Introduction, MVC architecture, components, containers.

Understanding Layout Managers - Flow Layout, Border Layout, Grid Layout, Card Layout, Grid

Bag Layout.

Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event

classes, Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous

Inner classes.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3

UNIT-1

❖ Introduction to OOPS / Features of OOPS:

Object means a real-world entity such as a pen, chair, table, computer, watch, etc. Object-

Oriented Programming is a methodology or paradigm to design a program using classes and

objects. It simplifies software development and maintenance by providing some concepts:

o Object

o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object:

➢ Any entity that has state and behavior is known as an object. For example, a chair, pen, table,

keyboard, bike, etc.

➢ It can be physical or logical.An Object can be defined as an instance of a class.

➢ An object contains an address and takes up some space in memory.

Example: A dog is an object because it has states like color, name, breed, etc. as well as behaviors

like wagging the tail, barking, eating, etc.

Class:

➢ Collection of objects is called class. It is a logical entity.

➢ A class can also be defined as a blueprint from which you can create an individual object.

Class doesn't consume any space.

Inheritance:

➢ When one object acquires all the properties and behaviors of a parent object, it is known as

inheritance.

➢ When we write a class, we inherit properties from other classes.

It provides code reusability. It is used to achieve runtime polymorphism.

Polymorphism:

➢ If one task is performed in different ways, it is known as polymorphism. For example: to

convince the customer differently, to draw something, for example, shape, triangle, rectangle,

etc.

➢ In Java, we use method overloading and method overriding to achieve polymorphism.

➢ Another example can be to speak something; for example, a cat speaks meow, dog barks

woof, etc.

Abstraction:

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4

➢ Hiding internal details and showing functionality is known as abstraction.

➢ For example phone call, we don't know the internal processing.

➢ In Java, we use abstract class and interface to achieve abstraction.

Encapsulation:

➢ Binding (or wrapping) code and data together into a single unit are known as encapsulation.

➢ For example, a capsule, it is wrapped with different medicines.

➢ A java class is the example of encapsulation. Java bean is the fully encapsulated class because

all the data members are private here.

Association:

➢ Association represents the relationship between the objects. Here, one object can be

associated with one object or many objects.

➢ There can be four types of association between the objects:

o One to One

o One to Many

o Many to One, and

o Many to Many

Let's understand the relationship with real-time examples. For example, One country can have

one prime minister (one to one), and a prime minister can have many ministers (one to many).

Also, many MP's can have one prime minister (many to one), and many ministers can have many

departments (many to many).

Association can be undirectional or bidirectional.

Aggregation:

➢ Aggregation is a way to achieve Association.

➢ Aggregation represents the relationship where one object contains other objects as a part of

its state. It represents the weak relationship between objects.

➢ It is also termed as a has-a relationship in Java. Like, inheritance represents the is-

a relationship. It is another way to reuse objects.

Composition:

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5

➢ The composition is also a way to achieve Association.

➢ The composition represents the relationship where one object contains other objects as a

part of its state.

➢ There is a strong relationship between the containing object and the dependent object.

➢ It is the state where containing objects do not have an independent existence. If you delete

the parent object, all the child objects will be deleted automatically.

❖ Procedure Oriented Approach

➢ Procedure-Oriented Programming is the traditional way of programming, where an

application problem is viewed as a sequence of steps (algorithms).

➢ As per the algorithm, the problem is broken down into many modules (functions) such as

data entry, reporting, querying modules, etc. as shown in the figure.

➢ There are two types of data, which are associated with these modules- one is global and

another is local data.

➢ Global data items are defined in the main program, whereas local data is define within

associated functions.

➢ High-level languages like COBOL, Pascal, BASIC, Fortran, C, etc. are based on a procedure-

oriented approach and hence are also called procedural languages.

❖ Differences between OOP and POP:

OOP

OOP, refers to Object Oriented Programming and its deals with objects and their properties.

Major concepts of OOPs are −

• Class/objects

• Abstraction

• Encapsulation

• Polymorphism

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6

• Inheritance

POP

POP, refers to Procedural Oriented Programming and its deals with programs and functions.

Programs are divided into functions and data is global.

Following are the important differences between OOP and POP.

Sr.

No.

Key OOP POP

1 Definition OOP stands for Object

Oriented Programing.

POP stands for

Procedural Oriented

Programming.

2 Approach OOP follows bottom up

approach.

POP follows top down

approach.

3 Division A program is divided to

objects and their

interactions.

A program is divided into

funtions and they

interacts.

4 Inheritance

supported

Inheritance is supported. Inheritance is not

supported.

5 Access

control

Access control is

supported via access

modifiers.

No access modifiers are

supported.

6 Data

Hiding

Encapsulation is used to

hide data.

No data hiding present.

Data is globally

accessible.

7 Example C++, Java C, Pascal

❖ Applications of Object Oriented Programming

The modern software engineering landscape is changing at a blistering pace. AI integration, low-

code applications, and new engineering efficiency tools have set the stage for a busy decade to

come (DevPro Journal). These changes make programming even more important as a

cornerstone strategy for building versatile, scalable, efficient applications.

1. Client-Server Systems

Object oriented client-server systems represent a powerful approach to designing and

implementing robust IT infrastructures. In these systems, programming principles are applied to

create a structured and modular architecture for building client and server components to

https://www.devprojournal.com/software-development-trends/5-predictions-on-how-software-engineering-will-change-in-2024/
https://www.devprojournal.com/software-development-trends/5-predictions-on-how-software-engineering-will-change-in-2024/

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7

provide the IT infrastructure and create Object Oriented Client-Server Internet (OCSI)

applications.

2. Object Oriented Databases

Object Oriented Databases, often referred to as Object Database Management Systems

(ODBMS), represent a specialized category of database systems that store and manage objects

directly instead of traditional relational data. These databases are designed to align

seamlessly and offer unique advantages in certain application domains.

3. Real-Time System Design

Real-Time System Design is a critical discipline in computer science and engineering that focuses

on creating systems capable of responding to external events or inputs within strict timing

constraints. Object Oriented Programming techniques can play a significant role in simplifying

the complexities associated with designing and implementing real-time systems.

4. Simulation and Modeling Systems

Simulation and Modeling Systems involve the creation of models that mimic real-world

processes or systems for various purposes, such as scientific research, engineering, decision-

making, and training. Object Oriented Programming offers an alternative and highly effective

approach for simplifying the development and management of complex modeling systems.

5. Hypertext and Hypermedia

Hypertext and Hypermedia systems are interactive information systems that enable users to

navigate through interconnected documents or multimedia content. Object Oriented

Programming provides a robust foundation for creating frameworks and applications for

hypertext and hypermedia.

6. Neural Networking and Parallel Programming

Neural Networking and Parallel Programming are two powerful fields of computer science with

diverse applications, and Object Oriented Programming can significantly simplify the

development and implementation of neural networks, especially in parallel computing

environments.

7. Office Automation Systems

Office Automation Systems (OAS) are software applications that streamline and automate

various administrative and communication tasks within organizations. These systems facilitate

information sharing, improve efficiency, and enhance communication among employees. Object

Oriented Programming is instrumental in the development of OAS, as it offers several

advantages for creating both formal and informal electronic systems within organizations.

8. CIM/CAD/CAM Systems

Computer-Integrated Manufacturing (CIM), Computer-Aided Design (CAD), and Computer-

Aided Manufacturing (CAM) systems are essential tools in manufacturing and design industries.

Object Oriented Programming plays a vital role in these systems, simplifying complex tasks such

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8

as blueprint and flowchart design, reducing development effort, and enhancing overall

efficiency.

9. AI Expert Systems

AI Expert Systems are computer applications that use specialized knowledge and reasoning

capabilities to solve complex problems or provide expertise in specific domains. Object Oriented

Programming is a valuable approach in the development of AI Expert Systems, especially when

dealing with intricate problems that go beyond human cognitive abilities.

10. E-Commerce Systems

E-Commerce Systems are complex platforms that enable online buying and selling of goods and

services. Object Oriented Programming plays a pivotal role in transforming the development of

E-Commerce systems by enhancing their scalability, modularity, and overall efficiency.

❖ Java programming

Java is a high-level and purely object oriented programming language. It is platform

independent, robust, secure, and multithreaded programming language which makes it popular

among other OOP languages. It is widely used for software, web, and mobile application

development, along with this it is also used in big data analytics and server-side technology.

Before moving towards features of Java, let us see how Java originated.

HISTORY:

➢ In 1990, Sun Microsystems Inc. started developing software for electronic devices. This

project was called the Stealth Project (later known as Green Project).

➢ In 1991, Bill Joy, James Gosling, and Patrick Naughton started working on this project.

Gosling decided to use C++ to develop this project, but the main problem he faced is that C++

is platform dependent language and could not work on different electronic device processors.

➢ As a solution to this problem, Gosling started developing a new language that can be

worked over different platforms, and this gave birth to the most popular, platform-independent

language known as Oak.

➢ Yes, you read that right, Oak, this was the first name of Java. But, later it was changed to

Java due to copyright issues (some other companies already registered with this name).

➢ On 23 January 1996, Java’s JDK 1.0 version was officially released by Sun

Microsystems. This time the latest release of Java is JDK 20.0 (March 2023).

➢ Now Java is being used in Web applications, Windows applications, enterprise applications,

mobile applications, etc. Every new version of Java comes with some new features.

P
ag

e3

https://www.interviewbit.com/java-interview-questions/

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9

❖ Features of java:

1. Simple:

Java is a simple programming language and easy to understand because it does not contain

complexities that exist in prior programming languages. In fact, simplicity was the design aim of

Javasoft people, because it has to work on electronic devices where less memory/resources are

available. Java contains the same syntax as C, and C++, so the programmers who are switching

to Java will not face any problems in terms of syntax.

2. Object-Oriented:

Java is an Object Oriented Programming Language, which means in Java everything is written in

terms of classes and objects. Now, what is an Object? The object is nothing but a real-world

entity that can represent any person, place, or thing and can be distinguished from others. Every

object near us has some state and behaviour associated with it.

For example, my mobile phone is a real-world entity and has states like colour, model, brand,

camera quality, etc, and these properties are represented by variables. Also mobile is associated

with actions like, calling, messaging, photography, etc and these actions are represented by

methods in Java.

The main concepts of any Object-Oriented Programming language are given below:

• Class and Object

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

3. Platform Independent:

The design objective of javasoft people is to develop a language that must work on any platform.

Here platform means a type of operating system and hardware technology. Java allows

programmers to write their program on any machine with any configuration and to execute it

on any other machine having different configurations.

4. Portable:

The WORA (Write Once Run Anywhere) concept and platform-independent feature make Java

portable. Now using the Java programming language, developers can yield the same result on

any machine, by writing code only once. The reason behind this is JVM and bytecode. Suppose

you wrote any code in Java, then that code is first converted to equivalent bytecode which is

P
ag

e4

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

only readable by JVM. We have different versions of JVM for different platforms.

5. Robust:

The Java Programming language is robust, which means it is capable of handling unexpected

termination of a program. There are 2 reasons behind this, first, it has a most important and

helpful feature called Exception Handling. If an exception occurs in java code then no harm will

happen whereas, in other low-level languages, the program will crash.

Another reason why Java is strong lies in its memory management features. Unlike other low-

level languages, Java provides a runtime Garbage collector offered by JVM, which collects all the

unused variables

6. Secure:

In today’s era, security is a major concern of every application. As of now, every device is

connected to each other using the internet and this opens up the possibility of hacking. And our

application built using java also needs some sort of security. So Java also provides security

features to the programmers. Security problems like virus threats, tampering, eavesdropping,

and impersonation can be handled or minimized using Java. Encryption and Decryption feature

to secure your data from eavesdropping and tampering over the internet. An Impersonation is

an act of pretending to be another person on the internet.

7. Interpreted:

In programming languages, you have learned that they use either the compiler or an interpreter,

but Java programming language uses both a compiler and an interpreter. Java programs are

compiled to generate bytecode files then JVM interprets the bytecode file during execution.

Along with this JVM also uses a JIT compiler (it increases the speed of execution).

8. Multi-Threaded:

Thread is a lightweight and independent subprocess of a running program (i.e, process) that

shares resources. And when multiple threads run simultaneously is called multithreading. In

many applications, you have seen multiple tasks running simultaneously, for example, Google

Docs where while typing text, the spell check and autocorrect tasks are running.

P
ag

e5

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

❖ JAVA PROGRAM STRUCTURE:

Let’s use example of HelloWorld Java program to understand structure and features of class.

This program is written on few lines, and its only task is to print “Hello World from Java” on the

screen. Refer the following picture.

1. “packagesct”:

It is package declaration statement. The package statement defines a name space in which

classes are stored. Package is used to organize the classes based on functionality. If you omit

the package statement, the class names are put into the default package, which has no name.

Package statement cannot appear anywhere in program. It must be first line of your program

or you can omit it.

2. “public class HelloWorld”:

This line has various aspects of java programming.

a. public: This is access modifier keyword which tells compiler access to class. Various

values of access modifiers can be public, protected,private or default (no value).

b. class: This keyword used to declare class. Name of class (HelloWorld) followed by this

keyword.

3. Comments section: We can write comments in java in two ways.

a. Line comments: It start with two forward slashes (//) and continue to the end of the

current line. Line comments do not require an ending symbol.

b. Block comments start with a forward slash and an asterisk (/*) and end with an asterisk

and a forward slash (*/).Block comments can also extend across as many lines as needed.

4. “public static void main (String []args)”:

P
ag

e6

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

Its method (Function) named main with string array as argument.

a. public : Access Modifier

b. static: static is reserved keyword which means that a method is accessible and usable

even though no objects of the class exist.

c. void: This keyword declares nothing would be returned from method. Method can

return any primitive or object.

d. Method content inside curly braces. { }

5. System.out.println("Hello World from Java") :

a. System:It is name of Java utility class.

b. out:It is an object which belongs to System class.

c. println:It is utility method name which is used to send any String to console.

d. “Hello World from Java”:It is String literal set as argument to println method.

❖ Java virtual machine:

The designers of Java chose to use a combination of compilation and interpretation. Programs

written in Java are compiled into machine language, but it is a machine language for a computer

that doesn’t really exist. This so-called “virtual” computer is known as the Java virtual machine.

The machine language for the Java virtual machine is called Java bytecode. There is no reason

why Java bytecode could not be used as the machine language of a real computer, rather than

a virtual computer.

However, one of the main selling points of Java is that it can actually be used on any computer.

All that the computer needs is an interpreter for Java bytecode.

Such an interpreter simulates the Java virtual machine in the same way that Virtual PC simulates

a PC computer. Of course, a different Jave bytecode interpreter is needed for each type of

computer, but once a computer has a Java bytecode interpreter, it can run any Java bytecode

program. And the same Java bytecode program can be run on any computer that has such an

interpreter. This is one of the essential features of Java: the same compiled program can be run

on many different types of computers.

P
ag

e7

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

What is JRE?

Java Run-time Environment (JRE) is the part of the Java Development Kit (JDK). It is a freely

available software distribution which has Java Class Library, specific tools, and a stand-alone

JVM. It is the most common environment available on devices to run java programs. The source

Java code gets compiled and converted to Java bytecode. If you wish to run this bytecode on

any platform, you require JRE. The JRE loads classes, verify access to memory, and retrieves the

system resources. JRE acts as a layer on the top of the operating system.

It also includes:

o Technologies which get used for deployment such as Java Web Start.

o Toolkits for user interface like Java 2D.

o Integration libraries like Java Database Connectivity (JDBC) and Java Naming and Directory

Interface (JNDI).

o Libraries such as Lang and util.

 Set up Java JRE with PATH Environment Variables

To develop or run Java applications, you need to download and install the Java SE Development

Kit.

Step 1.) Download the Java SE latest release from the official site of the oracle.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
4

Step 2.) After downloading the file, you will have an executable file downloaded. Run that file

and keep everything as default and keep clicking next and then install.

Step 3.) After completing the installation, your JDK and JRE would be downloaded in the

program files folder.

Step 4.) After complete installation, you need to set up the environment variables.

Step 5.) Go to control panel -> System and Security -> System -> Advanced System Settings.

The following dialog box will appear.

Step 6.) Click on Environment Variables, go to system variables, and double click on Path.

Step 7.) Now add the path of your bin file present in the JRE file to the Path variable.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
5

The set up Java environment is complete.

❖ Datatypes:

Data types specify the different sizes and values that can be stored in the variable. There are two

types of data types in Java:

A. Primitive Data Types:

In Java language, primitive data types are the building blocks of data manipulation. These are

the most basic data types available in Java language.

1. Boolean:

➢ The Boolean data type is used to store only two possible values: true and false. This data type

is used for simple flags that track true/false conditions.

➢ The Boolean data type specifies one bit of information, but its "size" can't be defined precisely.

➢ Default value is false and default size is 1bit.

Example:

https://www.javatpoint.com/java-tutorial

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
6

Boolean one = false

2. Byte:

➢ The byte data type is an example of primitive data type. It isan 8-bit signed two's complement

integer. Its value-range lies between -128 to 127 (inclusive). Its minimum value is -128 and

maximum value is 127. Its default value is 0.

➢ The byte data type is used to save memory in large arrays where the memory savings is most

required. It saves space because a byte is 4 times smaller than an integer. It can also be used in

place of "int" data type.

Example:

byte a = 10, byte b = -20

3. Short:

➢ The short data type is a 16-bit signed two's complement integer. Its value-range lies between

-32,768 to 32,767 (inclusive). Its minimum value is -32,768 and maximum value is 32,767. Its

default value is 0.

➢ The short data type can also be used to save memory just like byte data type. A short data

type is 2 times smaller than an integer.

Example:

short s = 10000, short v = -5000

4. Int:

➢ The int data type is a 32-bit signed two's complement integer. Its value-range lies between -

2,147,483,648 (-2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum value is -

2,147,483,648and maximum value is 2,147,483,647. Its default value is 0.

➢ The int data type is generally used as a default data type for integral values unless if there is

no problem about memory.

Example:

int a = 100000, int b = -200000

5. Long:

➢ The long data type is a 64-bit two's complement integer. Its value-range lies between -

9,223,372,036,854,775,808(-2^63) to 9,223,372,036,854,775,807(2^63 -1)(inclusive). Its

minimum value is - 9,223,372,036,854,775,808and maximum value is 9,223,372,036,854,775,807.

Its default value is 0.

➢ The long data type is used when you need a range of values more than those provided by

int.

Example:

long a = 100000L, long b = -200000L

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
7

6. Float:

➢ The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is

unlimited.

➢ It is recommended to use a float (instead of double) if you need to save memory in large

arrays of floating point numbers.

➢ The float data type should never be used for precise values, such as currency. Its default value

is 0.0F.

Example:

float f1 = 234.5f

7. Double:

➢ The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is

unlimited.

➢ The double data type is generally used for decimal values just like float. The double data type

also should never be used for precise values, such as currency. Its default value is 0.0d.

Example:

double d1 = 12.3

8. Char:

➢ The char data type is a single 16-bit Unicode character.

➢ Its value-range lies between '\u0000' (or 0) to '\uffff' (or 65,535 inclusive).The char data type

is used to store characters.

Example:

char letterA = 'A'

B. Non-primitive data types:

Unlike primitive data types, these are not predefined. These are user-defined data types created by

programmers. These data types are used to store multiple values.

1.Class: A class in Java is a user defined data type i.e. it is created by the user. It acts a template to

the data which consists of member variables and methods.

2.interface: An interface is similar to a class however the only difference is that its methods are

abstract by default i.e. they do not have body. An interface has only the final variables and

method declarations. It is also called a fully abstract class.

3.Array: An array is a data type which can store multiple homogenous variables i.e., variables of

same type in a sequence. They are stored in an indexed manner starting with index 0. The

variables can be either primitive or non-primitive data types.

4.String: A string represents a sequence of characters for example "Javanotes", Hello world", etc.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
8

String is the class of Java.

❖ Variables in Java

Java variable is a name given to a memory location. It is the basic unit of storage in a program.

• The value stored in a variable can be changed during program execution.

• Variables in Java are only a name given to a memory location. All the operations done on

the variable affect that memory location.

• In Java, all variables must be declared before use.

Declare Variables in Java

We can declare variables in Java as pictorially depicted below as a visual aid.

From the image, it can be easily perceived that while declaring a variable, we need to take care

of two things that are:

1. datatype: Type of data that can be stored in this variable.

2. data_name: Name was given to the variable.

In this way, a name can only be given to a memory location. It can be assigned values in two

ways:

• Variable Initialization

• Assigning value by taking input

Initialize Variables in Java

It can be perceived with the help of 3 components that are as follows:

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
9

• datatype: Type of data that can be stored in this variable.

• variable_name: Name given to the variable.

• value: It is the initial value stored in the variable.

❖ Literals or constant:

literals are the constant values that appear directly in the program. It can be assigned directly to

a variable. Java has various types of literals. The following figure represents a literal.

Types of literals:

There are the majorly following types of literals in Java:

1) Integer Literal:

Integer literals are sequences of digits. There are three types of integer literals:

Decimal integer: These are the set of numbers that consist of digits from 0 to 9. It may have a

positive (+) or negative (-) Note that between numbers commas and non-digit characters are

not permitted. For example, 5678,

+657, -89, etc.

Octal Integer: It is a combination of number have digits from 0 to 7 with a leading 0. For example,

045, 027.

Hexa-Decimal: The sequence of digits preceded by 0x or 0X is considered as hexadecimal

integers. It may also include a character

from a to f or A to F that represents numbers from 10 to 15, respectively. For example, 0xd, 0xf,

Binary Integer: Base 2, whose digits consists of the numbers 0 and 1 (you can create binary

P
ag

e1
3

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
0

literals in Java SE 7 and later). Prefix 0b represents the Binary system. For example, 0b11010.

2) Character Literal:

A character literal is expressed as a character or an escape sequence, enclosed in a single quote

('') mark. It is always a type of char. For example, 'a', '%', '\u000d', etc.

3) String Literal:

String literal is a sequence of characters that is enclosed between double

quotes ("") marks. It may be alphabet, numbers, special characters, blank space, etc. For example,

"Jack", "12345", "\n", etc.

Boolean Literal:

Boolean literals are the value that is either true or false. It may also have values 0 and For

example, true, 0, etc.

4) Floating Point Literal:

The vales that contain decimal are floating literals. In Java, float and double primitive types fall

into floating-point literals. Keep in mind while dealing with floating-point literals.Floating-point

literals for float type end with F or f. For example, 6f, 8.354F, etc. It is a 32-bit float literal.

Floating-point literals for double type end with D or d. It is optional to write D or d. For example,

6d, 8.354D, etc. It is a 64-bit double literal.

It can also be represented in the form of the exponent.

❖ Scope and Lifetime of a Variable in Java

The scope of a variable refers to the areas or the sections of the program in which the variable

can be accessed, and the lifetime of a variable indicates how long the variable stays alive in the

memory.

A joint statement defining the scope and lifetime of a variable is “how and where the variable

is defined.” Let me simplify it further. The comprehensive practice for the scope of a variable is

that it is accessible only inside the block it is declared.

Types of Variables and its Scope

There are three types of variables.

1. Instance Variables

2. Class Variables

3. Local Variables

Now, let us dig into the scope and lifetime of each of the above mentioned type.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
1

Instance Variables

A variable which is declared inside a class, but is declared outside any methods and blocks is

known as instance variable.

Scope: Throughout the class except in the static methods.

Lifetime: Until the object of the class stays in the memory.

Class Variables

A variable which is declared inside a class, outside all the blocks and is declared as static is

known as class variable.

Scope: Throughout the class.

Lifetime: Until the end of the program.

Local Variables

All variables which are not instance or class variables are known as local variables.

Scope: Within the block it is declared.

Lifetime: Until control leaves the block in which it is declared.

Now, let us look at an example code to paint a clear picture and understand the concept of

scope and lifetime of variables better.

Example

public class scope_and_lifetime {

 int num1, num2; //Instance Variables

 static int result; //Class Variable

 int add(int a, int b){ //Local Variables

 num1 = a;

 num2 = b;

 return a+b;

 }

 public static void main(String args[]){

 scope_and_lifetime ob = new scope_and_lifetime();

 result = ob.add(10, 20);

 System.out.println("Sum = " + result);

 }

 }

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
2

❖ Java Operators

Operators in Java, a Java toolkit, are being used as a symbol that performs various operations

according to the code. Some Operators of JAVA are "+","-","*","/" etc. The idea of using

Operators has been taken from other languages so that it behaves expectedly.

Types of Operators in Java

There are various types of Operators in Java that are used for operating. These are,

1. Arithmetic operators in Java

2. Relational operators in Java

3. Logical operators in Java

4. Assignment operator in Java

5. Unary operator in Java

6. Bitwise operator in Java

7. Comparison operator in Java

8. Ternary operator in Java

Arithmetic Operators in Java

Arithmetic Operators in Java are particularly used for performing arithmetic operations on given

data or variables. There are various types of operators in Java, such as

Operators Operations

+ Addition

- Subtraction

x Multiplication

/ Division

% Modulus

Assignment Operator in Java

https://www.scholarhat.com/tutorial/java/differences-between-jdk-jre-jvm-java-toolkit
https://www.scholarhat.com/tutorial/java/arithmetic-operators-in-java
https://www.scholarhat.com/tutorial/java/relational-operators-in-java
https://www.scholarhat.com/tutorial/java/logical-operators-in-java
https://www.scholarhat.com/tutorial/java/assignment-operator-in-java
https://www.scholarhat.com/tutorial/java/unary-operator-in-java
https://www.scholarhat.com/tutorial/java/bitwise-operators-in-java
https://www.scholarhat.com/tutorial/java/ternary-operator-in-java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
3

Assignment Operators are mainly used to assign the values to the variable that is situated in

Java programming. There are various assignment operators in Java, such as

Operators Examples Equivalent to

= X = Y; X = Y;

+= X += Y; X = X + Y;

-= X -= Y; X = X - Y;

*= X *= Y; X = X * Y;

/= X /= Y; X = X / Y;

%= X %= Y; X = X % Y;

Relational Operators in Java

Java relational operators are assigned to check the relationships between two particular

operators. There are various relational operators in Java, such as

Operators Description Example

== Is equal to 3 == 5 returns false

!= Not equal to 3 != 5 returns true

> Greater than 3 > 5 returns false

< Less than 3 < 5 returns true

>= Greater than or equal to 3 >= 5 returns false

<= Less than or equal to 3 <= 5 returns true

Logical Operators in Java

Logical Operators in Java check whether the expression is true or false. It is generally used for

making any decisions in Java programming. Not only that but Jump statements in Java are also

used for checking whether the expression is true or false. It is generally used for making any

decisions in Java programming.

https://www.scholarhat.com/tutorial/java/java-jump-statements-break-continue-return

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
4

Operators Example Meaning

&& [logical

AND]

expression1 &&

expression2

(true) only if both of the expressions

are true

|| [logical OR]
expression1 ||

expression2
(true) if one of the expressions in true

! [logical NOT] !expression
(true) if the expression is false and

vice-versa

Unary Operator in Java

Unary Operators in Java are used in only one operand. There are various types of Unary

Operators in Java, such as

Operators Description

+ Unary Plus

- Unary Minus

++ Increment operator

-- Decrement Operator

! Logical complement operator

Bitwise Operators in Java

Bitwise Operators in Java are used to assist the performance of the operations on individual bits.

There are various types of Bitwise Operators in Java, such as. We will see the working of the

Bitwise Operators in the Java Online Compiler.

Operators Descriptions

~ Bitwise Complement

<< Left shift

>> Right shift

https://www.scholarhat.com/compiler/java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
5

Operators Descriptions

>>> Unsigned Right shift

& Bitwise AND

^ Bitwise exclusive OR

Comparison Operators in Java

To compare two values (or variables), comparison operators are used. This is crucial to

programming since it facilitates decision-making and the search for solutions. A comparison's

return value is either true or false. These are referred to as "Boolean values."

Operators Operations

== Equal to

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Ternary Operators in Java

The only conditional operator that accepts three operands is the ternary operator in Java. Java

programmers frequently use it as a one-line alternative to the if-then-else expression. The

ternary operator can be used in place of if-else statements, and it can even be used to create

switch statements with nested ternary operators. The conditional operator uses less space and

aids in writing if-else statements as quickly as possible even if it adheres to the same algorithm

as an if-else statement

variable = Expression ? expression1 : expression2

❖ Type Casting in Java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
6

In Java, type casting is a method or process that converts a data type into another data type in

both ways manually and automatically. The automatic conversion is done by the compiler and

manual conversion performed by the programmer. In this section, we will discuss type

casting and its types with proper examples.

Types of Type Casting

There are two types of type casting:

o Widening Type Casting

o Narrowing Type Casting

Widening Type Casting

Converting a lower data type into a higher one is called widening type casting. It is also known

as implicit conversion or casting down. It is done automatically. It is safe because there is no

chance to lose data. It takes place when:

o Both data types must be compatible with each other.

o The target type must be larger than the source type.

1. byte -> short -> char -> int -> long -> float -> double

For example, the conversion between numeric data type to char or Boolean is not done

automatically. Also, the char and Boolean data types are not compatible with each other. Let's

see an example.

WideningTypeCastingExample.java

public class WideningTypeCastingExample

{

public static void main(String[] args)

{

int x = 7;

//automatically converts the integer type into long type

long y = x;

//automatically converts the long type into float type

float z = y;

System.out.println("Before conversion, int value "+x);

System.out.println("After conversion, long value "+y);

System.out.println("After conversion, float value "+z);

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
7

}

}

Output

Before conversion, the value is: 7

After conversion, the long value is: 7

After conversion, the float value is: 7.0

In the above example, we have taken a variable x and converted it into a long type. After that,

the long type is converted into the float type.

Narrowing Type Casting

Converting a higher data type into a lower one is called narrowing type casting. It is also known

as explicit conversion or casting up. It is done manually by the programmer. If we do not

perform casting then the compiler reports a compile-time error.

1. double -> float -> long -> int -> char -> short -> byte

Let's see an example of narrowing type casting.

In the following example, we have performed the narrowing type casting two times. First, we

have converted the double type into long data type after that long data type is converted into

int type.

NarrowingTypeCastingExample.java

public class NarrowingTypeCastingExample

{

public static void main(String args[])

{

double d = 166.66;

//converting double data type into long data type

long l = (long)d;

//converting long data type into int data type

int i = (int)l;

System.out.println("Before conversion: "+d);

//fractional part lost

System.out.println("After conversion into long type: "+l);

//fractional part lost

System.out.println("After conversion into int type: "+i);

}

}

Output

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
8

Before conversion: 166.66

After conversion into long type: 166

After conversion into int type: 166

❖ Java input

Java brings various Streams with its I/O package that helps the user perform all the Java input-

output operations. These streams support all types of objects, data types, characters, files, etc.

to fully execute the I/O operations. Input in Java can be with certain methods mentioned below

Using Scanner class

From Java 1.5 Scanner class was introduced. This class accepts a File, InputStream, Path and,

String objects, reads all the primitive data types and Strings (from the given source) token by

token using regular expressions. By default, whitespace is considered as the delimiter (to break

the data into tokens).

To read data from keyboard you need to use standard input as source (System.in). For each

datatype a nextXXX() is provided namely, nextInt(), nextShort(), nextFloat(), nextLong(),

nextBigDecimal(), nextBigInteger(), nextLong(), nextShort(), nextDouble(), nextByte(), nextFloat(),

next().

Example

Following Java program reads data from user using the Scanner class.

import java.util.*;

class Example {

 public static void main(String[] args)

 {

 // Scanner definition

 Scanner scn = new Scanner(System.in);

 // input is a string (one word)

 // read by next() function

 String str1 = scn.next();

 // print String

 System.out.println("Entered String str1 : " + str1);

 // input is a String (complete Sentence)

https://www.geeksforgeeks.org/java-io-input-output-in-java-with-examples/
https://www.geeksforgeeks.org/java-io-input-output-in-java-with-examples/

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e2
9

 // read by nextLine()function

 String str2 = scn.nextLine();

 // print string

 System.out.println("Entered String str2 : " + str2);

 // input is an Integer

 // read by nextInt() function

 int x = scn.nextInt();

 // print integer

 System.out.println("Entered Integer : " + x);

 // input is a floatingValue

 // read by nextFloat() function

 float f = scn.nextFloat();

 // print floating value

 System.out.println("Entered FloatValue : " + f);

 }

}

Learn Java in-depth with real-world projects through our Java certification course. Enroll and

become a certified expert to boost your career.

Using BufferedReader

The BufferedReader class of Java is used to read stream of characters from the specified source

(character-input stream). The constructor of this class accepts an InputStream object as a

parameter, you can to pass an InputStreamReader.

Using Console class

https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=java_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=java_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=java_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=java_tutorial_3p&utm_campaign=internal

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
0

This class is used to write/read data from the console (keyboard/screen) devices. It provides

a readLine() method which reads a line from the key-board. You can get an object of the Console

class using the console() method.

Note − If you try to execute this program in a non-interactive environment like IDE it doesn’t

work.

❖ Formatted Output in Java using printf()

Sometimes in programming, it is essential to print the output in a given specified format. Most

users are familiar with the printf function in C. Let us discuss how we can Formatting Output

with printf() in Java in this article.

Formatting Using Java Printf()

printf() uses format specifiers for formatting. There are certain data types are mentioned below:

• For Number Formatting

• Formatting Decimal Numbers

• For Boolean Formatting

• For String Formatting

• For Char Formatting

• For Date and Time Formatting

i). For Number Formatting

The number itself includes Integer, Long, etc. The formatting Specifier used is %d.

Below is the implementation of the above method:

// Java Program to demonstrate

// Use of printf to

// Formatting Integer

import java.io.*;

// Driver Class

class EXAMPLE {

 // main function

 public static void main (String[] args) {

 int a=10000;

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
1

 //System.out.printf("%.d%n",a);

 System.out.printf("%,d%n",a);

 }

}

Output

10,000

ii). For Decimal Number Formatting

Decimal Number Formatting can be done using print() and format specifier %f .

Below is the implementation of the above method:

// Java Programs to demonstrate

// Use of Printf() for decimal

// Number Formatting

import java.io.*;

// Driver Class

class EXAMPLE {

 // main function

 public static void main(String[] args)

 {

 // declaring double

 double a = 3.14159265359;

 // Printing Double Value with

 // different Formatting

 System.out.printf("%f\n", a);

 System.out.printf("%5.3f\n", a);

 System.out.printf("%5.2f\n", a);

 }

}

Output

3.141593

3.142

 3.14

iii). For Boolean Formatting

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
2

Boolean Formatting can be done using printf and (‘%b’ or ‘%B’) depending upon the result

needed.

Below is the implementation of the above method:

// Java Programs to demonstrate

// Use of Printf() for decimal

// Boolean Formatting

import java.io.*;

// Driver Function

class EXAMPLE {

 // main function

 public static void main(String[] args)

 {

 int a = 10;

 Boolean b = true, c = false;

 Integer d = null;

 // Fromatting Done using printf

 System.out.printf("%b\n", a);

 System.out.printf("%B\n", b);

 System.out.printf("%b\n", c);

 System.out.printf("%B\n", d);

 }

}

Output

true

TRUE

false

FALSE

iv). For Char Formatting

Char Formatting is easy to understand as it need printf() and Charracter format specifier used

are ‘%c’ and ‘%C’.

Below is the implementation of the above method:

// Java Program to Formatt

//

import java.io.*;

// Driver Class

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
3

class EXAMPLE {

 // main function

 public static void main(String[] args)

 {

 char c = 'g';

 // Formatting Done

 System.out.printf("%c\n", c);

 // Converting into Uppercase

 System.out.printf("%C\n", c);

 }

}

Output

g

G

v). For String Formatting

String Formatting requires the knowledge of Strings and format specifier used ‘%s’ and ‘%S’.

Below is the implementation of the above method:

// Java Program to implement

// Printf() for String Formatting

import java.io.*;

// Driver Class

class EXAMPLE {

 // main function

 public static void main(String[] args)

 {

 String str = "hello java program";

 // Formatting from lowercase to

 // Uppercase

 System.out.printf("%s \n", str);

 System.out.printf("%S \n", str);

 str = "EXAMPLE";

 // Vice-versa not possible

 System.out.printf("%S \n", str);

 System.out.printf("%s \n", str);

 }

}

Output

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
4

hello java program

HELLO JAVA PROGRAM

HEL

HEL

❖ Java String format()

The java string format() method returns the formatted string by given locale, format and

arguments.

If you don't specify the locale in String.format() method, it uses default locale by

calling Locale.getDefault() method.

The format() method of java language is like sprintf() function in c language and printf() method

of java language.

Internal implementation

public static String format(String format, Object... args) {

 return new Formatter().format(format, args).toString();

 }

Signature

There are two type of string format() method:

1. public static String format(String format, Object... args)

2. and,

3. public static String format(Locale locale, String format, Object... args)

Parameters

locale : specifies the locale to be applied on the format() method.

format : format of the string.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
5

args : arguments for the format string. It may be zero or more.

Returns

formatted string

Throws

NullPointerException : if format is null.

IllegalFormatException : if format is illegal or incompatible.

Java String format() method example

public class FormatExample{

public static void main(String args[]){

String name="sonoo";

String sf1=String.format("name is %s",name);

String sf2=String.format("value is %f",32.33434);

String sf3=String.format("value is %32.12f",32.33434);//returns 12 char fractional part filling with

 0

System.out.println(sf1);

System.out.println(sf2);

System.out.println(sf3);

}}

name is sonoo

value is 32.334340

value is 32.334340000000

Java String Format Specifiers

Here, we are providing a table of format specifiers supported by the Java String.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
6

Format

Specifier

Data Type Output

%a floating point

(except BigDecimal)

Returns Hex output of floating point

number.

%b Any type "true" if non-null, "false" if null

%c character Unicode character

%d integer (incl. byte, short, int,

long, bigint)

Decimal Integer

%e floating point decimal number in scientific notation

%f floating point decimal number

%g floating point decimal number, possibly in scientific

notation depending on the precision and

value.

%h any type Hex String of value from hashCode()

method.

%n none Platform-specific line separator.

%o integer (incl. byte, short, int,

long, bigint)

Octal number

%s any type String value

%t Date/Time (incl. long, Calendar,

Date and TemporalAccessor)

%t is the prefix for Date/Time conversions.

More formatting flags are needed after

this. See Date/Time conversion below.

%x integer (incl. byte, short, int,

long, bigint)

Hex string.

❖ Control statements in java:

➢ Java compiler executes the code from top to bottom. The statements in the code are executed

according to the order in which they appear.

➢ However, Java provides statements that can be used to control the flow of Java code.

➢ Such statements are called control flow statements. It is one of the fundamental features of

Java, which provides a smooth flow of program.

Java provides three types of control flow statements.

https://www.javatpoint.com/java-tutorial

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
7

1. Decision Making statements

o if statements

o switch statement

2. Loop statements

o do while loop

o while loop

o for loop

3. Jump statements

o break statement

o continue statement

▪ Decision Making statements:

➢ As the name suggests, decision-making statements decide which statement to execute and

when.

➢ Decision-making statements evaluate the Boolean expression and control the program flow

depending upon the result of the condition provided.

➢ There are two types of decision-making statements in Java, i.e., If statement and switch

statement.

a) If Statement:

➢ The "if" statement is used to evaluate a condition. The control of the program is diverted

depending upon the specific condition.

➢ The condition of the If statement gives a Boolean value, either true or false.

➢ In Java, there are four types of if-statements given below.

i.Simple if statement:

It is the most basic statement among all control flow statements in Java. It evaluates a Boolean

expression and enables the program to enter a block of code if the expression evaluates to true.

Syntax:

if(condition)

 {

 statement 1; //executes when condition is true

 }

class Biggrst {

public static void main(String[] args) {

int x = 10;

int y = 5;

if(x<y) {

System.out.println(x+ “ is greater value");

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
8

}

}

}

Output:

10 is greater value

ii. if-else statement:

The if-else statement is an extension to the if-statement, which uses another block of code, i.e.,

else block. The else block is executed if the condition of the if-block is evaluated as false.

Syntax:

if(condition)

 {

statement 1; //executes when condition is true

 }

 else

{

statement 2; //executes when condition is false

 }

class EvenOrOdd {

public static void main(String[] args) {

int x = 10;

if(x%2==0) {

System.out.println(x + “is even");

} else

System.out.println(x + “ is odd");

}

}

Output:

10 is even

iii.if-else-if ladder:

https://www.javatpoint.com/java-if-else

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e3
9

The if-else-if statement contains the if-statement followed by multiple else-if statements. In

other words, we can say that it is the chain of if-else statements that create a decision tree where

the program may enter in the block of code where the condition is true. We can also define an

else statement at the end of the chain.

Syntax:

if(condition 1)

 {

statement 1; //executes when condition 1 is true

 }

else if(condition 2)

 {

 statement 2; //executes when condition 2 is true

 }

else

{

statement 2; //executes when all the conditions are false

}

import java.util.Scanner;

class Biggest{

public static void main(String []args){

int a,b,c;

Scanner s=new Scanner(System.in);

System.out.println(“enter three numbers”);

a=s.nextInt();

b=s.nextInt();

c=s.nextInt();

if((a>b)&&(a>c)){

System.out.print(a+“is biggest”);

}

else if(b>c){

System.out.print(b+“is biggest”);

}

else

System.out.print(c+“is biggest”);

}

}

Output:

enter three numbers

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
0

30

40

20

20 is biggest

iv.Nested if-statement:

In nested if-statements, the if statement can contain a if or if-else statement inside another if or

else-if statement.

Syntax:

if(condition 1)

 {

 statement 1; //executes when condition 1 is true

if(condition 2)

{

statement 2; //executes when condition 2 is true

 }

 else

{

statement 2; //executes when condition 2 is false

 }

 }

b) Switch statement:

Switch statements are similar to if-else-if statements. The switch statement contains multiple

blocks of code called cases and a single case is executed based on the variable which is being

switched. The switch statement is easier to use instead of if-else-if statements. It also enhances

the readability of the program.

Points to be noted about switch statement:

➢ The case variables can be int, short, byte, char, or enumeration. String type is also supported

since version 7 of Java.

➢ Cases cannot be duplicate.

➢ Default statement is executed when any of the case doesn't match the value of expression. It

is optional.

https://www.javatpoint.com/java-switch

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
1

➢ Break statement terminates the switch block when the condition is satisfied.

It is optional, if not used, next case is executed.

Syntax:

switch (expression)

{

case value1:

 statement1;

break;

.

.

.

case valueN:

statementN;

break;

default:

 default statement;

 }

class Test {

 public static void main(String args[]) {

 char grade = 'C';

 switch(grade) {

 case 'A' :

 System.out.println("Excellent!");

 break;

 case 'B' :

 case 'C' :

 System.out.println("Well done");

 break;

 case 'D' :

 System.out.println("You passed");

 case 'F' :

 System.out.println("Better try again");

 break;

 default :

 System.out.println("Invalid grade");

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
2

 }

 System.out.println("Your grade is " + grade);

 }

}

Output

Well done

Your grade is C

▪ Loop statements:

➢ In programming, sometimes we need to execute the block of code repeatedly while some

condition evaluates to true.

➢ However, loop statements are used to execute the set of instructions in a repeated order.

➢ The execution of the set of instructions depends upon a particular condition.

➢ In Java, we have three types of loops that execute similarly. However, there are differences in

their syntax and condition checking time.

a) for loop:

➢ In Java, for loop is similar to C and C++. It enables us to initialize the loop variable, check the

condition, and increment/decrement in a single line of code.

➢ We use the for loop only when we exactly know the number of times, we want to execute the

block of code.

Syntax:

for(initialization, condition, increment/decrement)

 {

 //block of statements

 }

public class ForExample {

public static void main(String[] args) {

 for(int i=1;i<=10;i++){

 System.out.print(i+”\t”);

 }

}

}

Output:

https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
3

1 2 3 4 5 6 7 8 9 10

b) while loop:

➢ The while loop is also used to iterate over the number of statements multiple times. However,

if we don't know the number of iterations in advance, it is recommended to use a while loop.

➢ Unlike for loop, the initialization and increment/decrement doesn't take place inside the loop

statement in while loop.

➢ It is also known as the entry-controlled loop since the condition is checked at the start of the

loop.

➢ If the condition is true, then the loop body will be executed; otherwise, the statements after

the loop will be executed.

Syntax:

while(condition)

{

 //looping statements

 }

public class WhileExample {

public static void main(String[] args) {

int i=10;

 while(i>0){

 System.out.print(i+”\t”);

i--;

 }

}

}

Output:

10 9 8 7 6 5 4 3 2 1

c) do-while loop:

➢ The do-while loop checks the condition at the end of the loop after executing the loop

statements.

➢ When the number of iteration is not known and we have to execute the loop at least once,

we can use do-while loop.

➢ It is also known as the exit-controlled loop since the condition is not checked in advance.

https://www.javatpoint.com/java-while-loop
https://www.javatpoint.com/java-do-while-loop

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
4

Syntax:

do

 {

//statements

 }

while (condition);

public class DoWhileExample {

public static void main(String[] args) {

int i=1;

 {

 System.out.print(i+”\t”);

i++;

 } while(i<10);

}

}

Output:

1 2 3 4 5 6 7 8 9 10

▪ Jump statements:

Jump statements are used to transfer the control of the program to the specific statements. In

other words, jump statements transfer the execution control to the other part of the program.

There are two types of jump statements in Java, i.e., break and continue.

a) Break statement:

➢ The break statement is used to break the current flow of the program and transfer the control

to the next statement outside a loop or switch statement.

➢ However, it breaks only the inner loop in the case of the nested loop.

➢ The break statement cannot be used independently in the Java program, i.e., it can only be

written inside the loop or switch statement.

Syntax:

break;

public class ForExample {

public static void main(String[] args) {

 for(int i=1;i<=10;i++){

 if(i==5)

https://www.javatpoint.com/java-break

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
5

 {

 break;

 }

System.out.print(i+”\t”);

 }

}

}

Output:

1 2 3 4 5

b) Continue statement:

Unlike break statement, the continue statement doesn't break the loop, whereas, it skips the

specific part of the loop and jumps to the next iteration of the loop immediately.

Syntax:

continue;

public class ForExample {

public static void main(String[] args) {

 for(int i=1;i<=10;i++){

 if((i>4)&& (i<7))

 {

 continue;

 }

System.out.print(i+”\t”);

 }

}

}

Output:

1 2 3 4 7 8 9 10

▪ Return statement:

In Java programming, the return statement is used for returning a value when the execution of

the block is completed.

Returning a value from a method:

https://www.javatpoint.com/java-continue

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
6

➢ In Java, every method is declared with a return type such as int, float, double, string, etc.

➢ These return types required a return statement at the end of the method. A return keyword

is used for returning the resulted value.

➢ The void return type doesn't require any return statement. If we try to return a value from a

void method, the compiler shows an error.

Following are the important points must remember while returning a value:

➢ The return type of the method and type of data returned at the end of the method should be

of the same type. For example, if a method is declared with the float return type, the value

returned should be of float type only.

Syntax:

return return value;

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
7

❖ Java Arrays (One Dimensional array)

An array is a collection of similar types of data. The elements of an array are stored in a

contiguous memory location. It is a data structure where we store similar elements. We can

store only a fixed set of elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the 0th index, 2nd

element is stored on 1st index and so on.

1. Declare an array in Java:

In Java, here is how we can declare an array.

dataType[] arrayName;

dataType - it can be primitive data types like int, char, double, byte, etc.

arrayName - it is an identifier

For example,

double[] data;

Here, data is an array that can hold values of type double.

2. Memory allocation:

we have to allocate memory for the array in Java. Memory representation. When you use new

to create an array, Java reserves space in memory for it (and initializes the values). This process

is called memory allocation.

For example,

double[] data;

data = new double[10];

Here, the array can store 10 elements. We can also say that the size or length of the array is

10.

In Java, we can declare and allocate the memory of an array in one single statement. For

example,

double[] data = new double[10];

3. Initialize Arrays in Java:

In Java, we can initialize arrays during declaration. For example,

int[] age = {12, 4, 5, 2, 5};

Here, we have created an array named age and initialized it with the values inside the curly

brackets.

Note that we have not provided the size of the array. In this case, the Java compiler

automatically specifies the size by counting the number of elements in the array

In the Java array, each memory location is associated with a number. The number is known

as an array index.

Array indices always start from 0. That is, the first element of an array is at index 0.

If the size of an array is n, then the last element of the array will be at index n-1.

4. Access Elements of an Array:

We can use loops to access all the elements of the array at once.

Looping Through Array Elements:

In Java, we can also loop through each element of the array. For example,

Example: Using For Loop

class Main {

public static void main(String[] args) {

int[] age = {12, 4, 5};

System.out.println("Using for Loop:");

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
8

for(int i = 0; i < age.length; i++) {

System.out.println(age[i]);

}

}

}

Output

Using for Loop:

12

4

5

In the above example, we are using the for Loop in Java to iterate through each element of

the array. Notice the expression inside the loop, age.length

Here, we are using the length property of the array to get the size of the array.

❖ Types of Array In Java, there are two types of arrays:

1. Single-Dimensional Array

2. Multi-Dimensional Array

Single-Dimensional Array:

➢ An array that has only one subscript or one dimension is known as a single-dimensional

array. It is just a list of the same data type variables.

➢ One dimensional array can be of either one row and multiple columns or multiple rows

and one column.

➢ The declaration and initialization of an single-dimensional array is same as array’s

initialization and declaration.

 Example:

 int marks[] = {56, 98, 77, 89, 99};

 Multi-Dimensional Array:

 A multi-dimensional array is just an array of arrays that represents multiple rows and

columns.

 In multi-dimensional arrays, we have two categories:

i. Two-Dimensional Arrays

ii. Three-Dimensional Arrays

i. Two-Dimensional Arrays:

 An array involving two subscripts [] [] is known as a two-dimensional array. They are also

known as the array of the array. Two-dimensional arrays are divided into rows and columns

and are able to handle the data of the table.

 Syntax:

DataType ArrayName[row_size][column_size];

Example:

 int arr[5][5];

ii. Three-Dimensional Arrays:

➢ When we require to create two or more tables of the elements to declare the array

elements, then in such a situation we use three-dimensional arrays.

➢ 3D array adds an extra dimension to the 2D array to increase the amount of space.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e4
9

➢ Eventually, it is set of the 2D array. Each variable is identified with three indexes; the

last two dimensions represent the number of rows and columns, and the first

dimension is to select the block size.

➢ The first dimension depicts the number of tables or arrays that the 3D array contains.

Syntax:

DataType ArrayName[size1][size2][size3];

Example:

int a[5][5][5];

❖ Strings

 Generally, String is a sequence of characters. But in Java, string is an object that represents

a sequence of characters. The java.lang.String class is used to create a string object. An array

of characters works same as Java string.

 For example:

char[] ch={'c','o','m','p','u','t','e','r'};

String s=new String(ch); is same as:

String s="computer";

Creating Strings:

There are two ways to create String object:

1. By string literal

2. By new keyword

1) By string literal:

Java String literal is created by using double quotes.

➢ String objects are stored in a special memory area known as the "string constant pool".

➢ Each time you create a string literal, the JVM checks the "string constant pool" first.

➢ If the string already exists in the pool, a reference to the pooled instance is returned.

➢ If the string doesn't exist in the pool, a new string instance is created and placed in the

pool.

➢ The string literal concept is used to make Java more memory efficient (because no new

objects are created if it exists already in the string constant pool).

Syntax:

<String_Type><string_variable> = "<sequence_of_string>";

Example:

String s="welcome";

2) By new keyword:

String s=new String("Welcome"); //creates two objects and one reference variable

➢ In such case, JVM will create a new string object in normal (non-pool) heap memory, and

the literal "Welcome" will be placed in the string constant pool.

➢ The variable s will refer to the object in a heap (non-pool).

Program:

public class StringExample {

 public static void main(String args[]) {

 String s1="java";

char ch[]={'s','t','r','i','n','g','s'};

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
0

String s2=new String(ch);

String s3=new String("example");

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

 }

 }

Output:

java

strings

example

❖ String class methods

➢ The java.lang.String class provides a lot of built-in methods that are used to manipulate

string in Java.

➢ By the help of these methods, we can perform operations on String objects such as

trimming, concatenating, converting, comparing, replacing strings etc.

➢ Java String is a powerful concept because everything is treated as a String if you submit any

form in window based, web based or mobile application.

Some of the important methods are:

1) Java String toUpperCase() and toLowerCase() method:

The Java String toUpperCase() method converts this String into uppercase letter and String

toLowerCase() method into lowercase letter.

Program:

public class Test {

public static void main(String args[]) {

String s="Sachin";

System.out.println(s.toUpperCase());//SACHIN

System.out.println(s.toLowerCase());//Sachin

System.out.println(s);//Sachin(no change in original)

}

}

2) Java String trim() method:

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
1

The String class trim() method eliminates white spaces before and after the String.

Program:

public class Test2{

public static void main(String args[]){

String s=" Sachin ";

System.out.println(s);// Sachin

System.out.println(s.trim());//Sachin

}

}

Output:

Sachin Sachin

3) Java String startsWith() and endsWith() method:

The method startsWith() checks whether the String starts with the letters passed as arguments and

endsWith() method checks whether the String ends with the letters passed as arguments.

Program:

public class Test3{

public static void main(String args[]){

String s="Sachin";

System.out.println(s.startsWith("Sa"));//true

System.out.println(s.endsWith("n"));//true

}

}

Output:

true true

4) Java String charAt() Method:

The String class charAt() method returns a character at specified index.

Program:

public class Test4{

public static void main(String args[]) {

String s="Sachin";

System.out.println(s.charAt(0));//S

System.out.println(s.charAt(3));//h

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
2

}

}

Output:

S

 h

5) Java String length() Method:

The String class length() method returns length of the specified String.

Program:

public class Test5{

public static void main(String args[]){

String s="Sachin";

System.out.println(s.length());//6

}

}

Output:

6

6) Java String valueOf() Method:

The String class valueOf() method coverts given type such as int, long, float, double, boolean, char

and char array into String.

Program:

public class Test6{

public static void main(String args[]){

int a=10;

String s=String.valueOf(a);

System.out.println(s+10);

}

}

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
3

Output:

1010

7) Java String replace() Method:

The String class replace() method replaces all occurrence of first sequence of character with second

sequence of character.

Program:

public class Test7

{

public static void main(String ar[])

{

String s1="Java is a programming language. Java is a platform. Java is an Island.";

String replaceString=s1.replace("Java","Oops");

//replaces all occurrences of "Java" to "Oops"

System.out.println(replaceString);

}

}

Output:

Oops is a programming language.Oops is a platform. Oops is an Island.

❖ Command line arguments

➢ Java command-line argument is an argument i.e. passed at the time of

running the Java program.

➢ In the command line, the arguments passed from the console can be

received in the java program and they can be used as input.

➢ The users can pass the arguments during the execution bypassing the

command- line arguments inside the main() method.We need to pass the

arguments as space-separated values.

➢ We can pass both strings and primitive data types(int, double, float, char,

etc) as command-line arguments.

➢ These arguments convert into a string array and are provided to the

main() function as a string array argument.

➢ When command-line arguments are supplied to JVM, JVM wraps these

and supplies them to args[].

➢ It can be confirmed that they are wrapped up in an args array by

checking the length of args using args.length.

➢ Internally, JVM wraps up these command-line arguments into the args[]

array that we pass into the main() function.

➢ We can check these arguments using args.length method. JVM stores the

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
4

first command-line argument at args[0], the second at args[1], the third at

args[2], and so on

public class CommandLine {

public static void main(String[] args) {

 System.out.println("No of arguments are "+args.length);

 System.out.println("arguments are ");

 for (int i = 0; i < args.length; i++) {

 System.out.println(args[i]);

 }

}

}

Output

 C:\java programs\data science\second> javac CommandLine.java

 C:\java programs\data science\second> java CommandLine hello java program

No of arguments are 3

arguments are

hello

java

program

❖ classes and objects

The classes and objects are the basic and important features of object-oriented

programming system, Java supports the following fundamental OOPs concepts

Classes, Objects, Inheritance, Polymorphism, Encapsulation, Abstraction, Instance, Method,

Message Passing

In this tutorial, we will learn about Java Classes and Objects, the creation of the classes and

objects, accessing class methods, etc.

✓ Java Classes

A class is a blueprint from which individual objects are created (or, we can say a class is

a data type of an object type). In Java, everything is related to classes and objects. Each

class has its methods and attributes that can be accessed and manipulated through the

objects.

For example, if you want to create a class for students. In that case, "Student" will be a class,

and student records (like student1, student2, etc) will be objects.

https://www.tutorialspoint.com/java/java_oops_concepts.htm
https://www.tutorialspoint.com/java/java_basic_datatypes.htm
https://www.tutorialspoint.com/java/java_class_methods.htm
https://www.tutorialspoint.com/java/java_class_attributes.htm

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
5

We can also consider that class is a factory (user-defined blueprint) to produce objects.

Properties of Java Classes

• A class does not take any byte of memory.

• A class is just like a real-world entity, but it is not a real-world entity. It's a blueprint

where we specify the functionalities.

• A class contains mainly two things: Methods and Data Members.

• A class can also be a nested class.

• Classes follow all of the rules of OOPs such as inheritance, encapsulation, abstraction,

etc.

Types of Class Variables

A class can contain any of the following variable types.

• Local variables − Variables defined inside methods, constructors or blocks are called

local variables. The variable will be declared and initialized within the method and the

variable will be destroyed when the method has completed.

• Instance variables − Instance variables are variables within a class but outside any

method. These variables are initialized when the class is instantiated. Instance variables

can be accessed from inside any method, constructor or blocks of that particular class.

• Class variables − Class variables are variables declared within a class, outside any

method, with the static keyword.

Creating (Declaring) a Java Class

To create (declare) a class, you need to use access modifiers followed by class keyword

and class_name.

Syntax to create a Java class

Use the below syntax to create (declare) class in Java:

access_modifier class class_name{

 data members;

 constructors;

 methods;

 ...;

}

Example of a Java Class

In this example, we are creating a class "Dog". Where, the class attributes are breed, age,

and color. The class methods are setBreed(), setAge(), setColor(), and printDetails().

https://www.tutorialspoint.com/java/java_access_modifiers.htm

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
6

// Creating a Java class

class Dog {

 // Declaring and initializing the attributes

 String breed;

 int age;

 String color;

 // methods to set breed, age, and color of the dog

 public void setBreed(String breed) {

 this.breed = breed;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public void setColor(String color) {

 this.color = color;

 }

 // method to print all three values

 public void printDetails() {

 System.out.println("Dog detials:");

 System.out.println(this.breed);

 System.out.println(this.age);

 System.out.println(this.color);

 }

}

✓ Java Object

An object is a variable of the type class, it is a basic component of an object-oriented

programming system. A class has the methods and data members (attributes), these

methods and data members are accessed through an object. Thus, an object is an instance

of a class.

If we consider the real world, we can find many objects around us, cars, dogs, humans, etc.

All these objects have a state and a behavior.

If we consider a dog, then its state is - name, breed, and color, and the behavior is -

barking, wagging the tail, and running.

Creating (Declaring) a Java Object

As mentioned previously, a class provides the blueprints for objects. So basically, an object

is created from a class. In Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class −

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
7

• Declaration − A variable declaration with a variable name with an object type.

• Instantiation − The 'new' keyword is used to create the object.

• Initialization − The 'new' keyword is followed by a call to a constructor. This call

initializes the new object.

Syntax to Create a Java Object

Consider the below syntax to create an object of the class in Java:

Class_name object_name = new Class_name([parameters]);

Example to Create a Java Object

In this example, we are creating an object named obj of Dog class and accessing its

methods.

// Creating a Java class

class Dog {

 // Declaring and initializing the attributes

 String breed;

 int age;

 String color;

 // methods to set breed, age, and color of the dog

 public void setBreed(String breed) {

 this.breed = breed;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public void setColor(String color) {

 this.color = color;

 }

 // method to print all three values

 public void printDetails() {

 System.out.println("Dog detials:");

 System.out.println(this.breed);

 System.out.println(this.age);

 System.out.println(this.color);

 }

 }

 public class Main {

 public static void main(String[] args) {

 // Creating an object of the class Dog

 Dog obj = new Dog();

 // setting the attributes

 obj.setBreed("Golden Retriever");

 obj.setAge(2);

 obj.setColor("Golden");

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
8

 // Printing values

 obj.printDetails();

 }

 }

Output

Dog detials:

Golden Retriever

2

Golden

❖ Java static keyword

The static keyword in Java is used for memory management mainly. We can apply

static keyword with variables, methods, blocks and nested classes. The static

keyword belongs to the class than an instance of the class.

1) Java static variable

If you declare any variable as static, it is known as a static variable.

o The static variable can be used to refer to the common property of all objects (which

is not unique for each object), for example, the company name of employees, college

name of students, etc.

o The static variable gets memory only once in the class area at the time of class loading.

Understanding the problem without static variable

class Student{

 int rollno;

 String name;

 String college="ADITYA";

}

Suppose there are 500 students in my college, now all instance data members will get

memory each time when the object is created. All students have its unique rollno and name,

so instance data member is good in such case. Here, "college" refers to the common property

of all objects. If we make it static, this field will get the memory only once.

Java static property is shared to all objects.

Example

//Java Program to demonstrate the use of static variable

class Student{

 int rollno;//instance variable

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/object-and-class-in-java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e5
9

 String name;

 static String college ="ADITYA DEGREE COLLEGE";//static variable

 //constructor

 Student(int r, String n){

 rollno = r;

 name = n;

 }

 //method to display the values

 void display (){System.out.println(rollno+" "+name+" "+college);}

}

//Test class to show the values of objects

public class TestStaticVariable1{

 public static void main(String args[]){

 Student s1 = new Student(111,"Rama");

 Student s2 = new Student(222,"Manga");

 //we can change the college of all objects by the single line of code

 //Student.college="BBDIT";

 s1.display();

 s2.display();

 }

}

Output:

111 Rama ADITYA DEGREE COLLEGE

222 Manga ADITYA DEGREE COLLEGE

2) Java static method

If you apply static keyword with any method, it is known as static method.

o A static method belongs to the class rather than the object of a class.

o A static method can be invoked without the need for creating an instance of a class.

o A static method can access static data member and can change the value of it.

Example of static method

//Java Program to demonstrate the use of a static method.

class Student{

 int rollno;

 String name;

 static String college = "ADC";

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
0

 //static method to change the value of static variable

 static void change(){

 college = "AWDC";

 }

 //constructor to initialize the variable

 Student(int r, String n){

 rollno = r;

 name = n;

 }

 //method to display values

 void display(){System.out.println(rollno+" "+name+" "+college);}

}

//Test class to create and display the values of object

public class TestStaticMethod{

 public static void main(String args[]){

 Student.change();//calling change method

 //creating objects

 Student s1 = new Student(111,"Rama");

 Student s2 = new Student(222,"Manga");

 Student s3 = new Student(333,"Vasavi");

 //calling display method

 s1.display();

 s2.display();

 s3.display();

 }

}

Output: 111 Rama AWDC

 222 Manga AWDC

 333 Vasavi AWDC

❖ Java this Keyword

In Java, this keyword is used to refer to the current object inside a method or a constructor.

Use of this Keyword

In Java, it is not allowed to declare two or more variables having the same name inside a

scope (class scope or method scope). However, instance variables and parameters may

have the same name.

https://www.programiz.com/java-programming/methods
https://www.programiz.com/java-programming/constructors
https://www.programiz.com/java-programming/variables-literals

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
1

 For example,

class MyClass {

 // instance variable

 int age;

 // parameter

 MyClass(int age){

 age = age;

 }

}

In the above program, the instance variable and the parameter have the same name: age.

Here, the Java compiler is confused due to name ambiguity.

In such a situation, we use this keyword. For example,

First, let's see an example without using this keyword:

class Main {

 int age;

 Main(int age){

 age = age;

 }

 public static void main(String[] args) {

 Main obj = new Main(8);

 System.out.println("obj.age = " + obj.age);

 }

}

Output:

obj.age = 0

In the above example, we have passed 8 as a value to the constructor. However, we are

getting 0 as an output. This is because the Java compiler gets confused because of the

ambiguity in names between instance the variable and the parameter.

Now, let's rewrite the above code using this keyword.

class Main {

 int age;

 Main(int age){

 this.age = age;

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
2

 }

 public static void main(String[] args) {

 Main obj = new Main(8);

 System.out.println("obj.age = " + obj.age);

 }

}

Output:

obj.age = 8

Now, we are getting the expected output. It is because when the constructor is

called, this inside the constructor is replaced by the object obj that has called the

constructor. Hence the age variable is assigned value 8

❖ Parameters passing

Information can be passed to methods as a parameter. Parameters act as variables inside

the method.

Parameters are specified after the method name, inside the parentheses. You can add as

many parameters as you want, just separate them with a comma.

The following example has a method that takes a String called fname as parameter. When

the method is called, we pass along a first name, which is used inside the method to print

the full name:

public class Main {

 static void myMethod(String fname) {

 System.out.println(fname + " Refsnes");

 }

 public static void main(String[] args) {

 myMethod("Liam");

 myMethod("Jenny");

 myMethod("Anja");

 }

}

output

Liam Refsnes

Jenny Refsnes

Anja Refsnes

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
3

❖ Java Constructors

Java constructors are special types of methods that are used to initialize an object when it is

created. It has the same name as its class and is syntactically similar to a method. However,

constructors have no explicit return type.

All classes have constructors, whether you define one or not because Java automatically

provides a default constructor that initializes all member variables to zero. However, once

you define your constructor, the default constructor is no longer used.

Rules for Creating Java Constructors

• You must follow the below-given rules while creating Java constructors:

• The name of the constructors must be the same as the class name.

• Java constructors do not have a return type. Even do not use void as a return type.

• There can be multiple constructors in the same class, this concept is known as

constructor overloading.

• The access modifiers can be used with the constructors, use if you want to change the

visibility/accessibility of constructors.

• Java provides a default constructor that is invoked during the time of object creation.

If you create any type of constructor, the default constructor (provided by Java) is not

invoked.

Creating a Java Constructor

To create a constructor in Java, simply write the constructor's name (that is the same as the

class name) followed by the brackets and then write the constructor's body inside the curly

braces ({}).

Syntax

Following is the syntax of a constructor −

class ClassName {

 ClassName() {

 }

}

Example to create a Java Constructor

The following example creates a simple constructor that will print "Hello world".

public class Main {

 // Creating a constructor

 Main() {

 System.out.println("Hello, World!");

 }

 public static void main(String[] args) {

 System.out.println("The main() method.");

 // Creating a class's object

 // that will invoke the constructor

https://www.tutorialspoint.com/java/java_methods.htm
https://www.tutorialspoint.com/java/java_object_classes.htm
https://www.tutorialspoint.com/java/java_access_modifiers.htm
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=java_tutorial_3p&utm_campaign=internal
https://www.tutorialspoint.com/certification/ultimate-guide-to-java-and-spring-boot-for-2022/index.asp?utm_source=tutorialspoint&utm_medium=java_tutorial_3p&utm_campaign=internal

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
4

 Main obj_x = new Main();

 }

}

Output:

The main() method.

Hello, World!

Types of Java Constructors

There are three different types of constructors in Java, we have listed them as follows:

1. Default Constructor

2. No-Args Constructor

3. Parameterized Constructor

1. Default Constructor

If you do not create any constructor in the class, Java provides a default constructor that

initializes the object.

Example: Default Constructor (A Class Without Any Constructor)

In this example, there is no constructor defined by us. The default constructor is there to

initialize the object.

public class Main {

 int num1;

 int num2;

 public static void main(String[] args) {

 // We didn't created any structure

 // a default constructor will invoke here

 Main obj_x = new Main();

 // Printing the values

 System.out.println("num1 : " + obj_x.num1);

 System.out.println("num2 : " + obj_x.num2);

 }

}

Output

num1 : 0

num2 : 0

2. No-Args (No Argument) Constructor

As the name specifies, the No-argument constructor does not accept any argument. By using

the No-Args constructor you can initialize the class data members and perform various

activities that you want on object creation.

Example: No-Args Constructor

This example creates no-args constructor.

public class Main {

 int num1;

 int num2;

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
5

 // Creating no-args constructor

 Main() {

 num1 = 16;

 num2 = 15;

 }

 public static void main(String[] args) {

 // no-args constructor will invoke

 Main obj_x = new Main();

 // Printing the values

 System.out.println("num1 : " + obj_x.num1);

 System.out.println("num2 : " + obj_x.num2);

 }

}

Output

num1 : 16

num2 : 15

3. Parameterized Constructor

A constructor with one or more arguments is called a parameterized constructor.

Most often, you will need a constructor that accepts one or more parameters. Parameters are

added to a constructor in the same way that they are added to a method, just declare them

inside the parentheses after the constructor's name.

Example 1: Parameterized Constructor

This example creates a parameterized constructor.

public class Main {

 int num1;

 int num2;

 // Creating parameterized constructor

 Main(int a, int b) {

 num1 = a;

 num2 = b;

 }

 public static void main(String[] args) {

 // Creating two objects by passing the values

 // to initialize the attributes.

 // parameterized constructor will invoke

 Main obj_x = new Main(10, 20);

 Main obj_y = new Main(100, 200);

 // Printing the objects values

 System.out.println("obj_x");

 System.out.println("num1 : " + obj_x.num1);

 System.out.println("num2 : " + obj_x.num2);

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
6

 System.out.println("obj_y");

 System.out.println("num1 : " + obj_y.num1);

 System.out.println("num2 : " + obj_y.num2);

 }

}

Output

obj_x

num1 : 10

num2 : 20

obj_y

num1 : 100

num2 : 200

❖ Method Overloading in Java

If a class has multiple methods having same name but different in parameters, it is known

as Method Overloading.

If we have to perform only one operation, having same name of the methods increases the

readability of the program.

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments

2. By changing the data type

1) Method Overloading: changing no. of arguments

In this example, we have created two methods, first add() method performs addition of two

numbers and second add method performs addition of three numbers.

In this example, we are creating static methods so that we don't need to create instance for

calling methods.

class Adder{

static int add(int a,int b){

return a+b;

}

static int add(int a,int b,int c){

return a+b+c;

}

}

class TestOverloading1{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-programs
https://www.javatpoint.com/static-keyword-in-java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
7

System.out.println(Adder.add(11,11,11));

}}

Output:

22

33

2) Method Overloading: changing data type of arguments

In this example, we have created two methods that differs in data type. The first add method

receives two integer arguments and second add method receives two double arguments.

class Adder{

static int add(int a, int b){

return a+b;

}

static double add(double a, double b){

return a+b;

}

}

class TestOverloading2{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(12.3,12.6));

}}

Output:

22

24.9

❖ Inheritance in Java

Inheritance in Java is a mechanism in which one object acquires all the properties and

behaviours of a parent object. It is an important part of OOPs (Object Oriented programming

system).

The idea behind inheritance in Java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields

of the parent class. Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-

child relationship.

https://www.javatpoint.com/java-data-types
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
8

Terms used in Inheritance

o Class: A class is a group of objects which have common properties. It is a template or

blueprint from which objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called

a derived class, extended class, or child class.

o Super Class/Parent Class: Superclass is the class from where a subclass inherits the

features. It is also called a base class or a parent class.

o Reusability: As the name specifies, reusability is a mechanism which facilitates you to

reuse the fields and methods of the existing class when you create a new class. You

can use the same fields and methods already defined in the previous class.

The syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

 //methods and fields

}

The extends keyword indicates that you are making a new class that derives from an existing

class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or superclass, and the

new class is called child or subclass.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only.

We will learn about interfaces later.

Note: Multiple inheritance is not supported in Java through class.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e6
9

When one class inherits multiple classes, it is known as multiple inheritance. For Example:

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given

below, Dog class inherits the Animal class, so there is the single inheritance.

File: TestInheritance.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}}

Output:

barking...

eating...

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in

the example given below, BabyDog class inherits the Dog class which again inherits the

Animal class, so there is a multilevel inheritance.

File: TestInheritance2.java

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
0

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

public static void main(String args[]){

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

}}

Output:

weeping...

barking...

eating...

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In the

example given below, Dog and Cat classes inherits the Animal class, so there is hierarchical

inheritance.

File: TestInheritance3.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
1

c.eat();

//c.bark();

}}

Output:

meowing...

eating...

❖ Access Modifiers in Java

There are two types of modifiers in Java: access modifiers and non-access modifiers.

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor,

or class. We can change the access level of fields, constructors, methods, and class by

applying the access modifier on it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be

accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be

accessed from outside the package. If you do not specify any access level, it will be

the default.

3. Protected: The access level of a protected modifier is within the package and outside

the package through child class. If you do not make the child class, it cannot be

accessed from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from

within the class, outside the class, within the package and outside the package.

Understanding Java Access Modifiers

Let's understand the access modifiers in Java by a simple table.

Access

Modifier

within

class

within

package

outside package by subclass

only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
2

1) Private

The private access modifier is accessible only within the class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data

member and private method. We are accessing these private members from outside the class,

so there is a compile-time error.

class A{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

2) Default

If you don't use any modifier, it is treated as default by default. The default modifier is

accessible only within package. It cannot be accessed from outside the package. It provides

more accessibility than private. But, it is more restrictive than protected, and public.

Example of default access modifier

In this example, we have created two packages pack and mypack. We are accessing the A

class from outside its package, since A class is not public, so it cannot be accessed from

outside the package.

//save by A.java

package pack;

class A{

 void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
3

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

In the above example, the scope of class A and its method msg() is default so it cannot be

accessed from outside the package.

3) Protected

The protected access modifier is accessible within package and outside the package but

through inheritance only.

The protected access modifier can be applied on the data member, method and constructor.

It can't be applied on the class.

It provides more accessibility than the default modifer.

Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A class of pack

package is public, so can be accessed from outside the package. But msg method of this

package is declared as protected, so it can be accessed from outside the class only through

inheritance.

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B extends A{

 public static void main(String args[]){

 B obj = new B();

 obj.msg();

 }

}

Output:Hello

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
4

4) Public

The public access modifier is accessible everywhere. It has the widest scope among all other

modifiers.

Example of public access modifier

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}

Output:Hello

❖ Super Keyword in Java

The super keyword in Java is a reference variable that is used to refer to parent class when

we’re working with objects. You need to know the basics

of Inheritanceand Polymorphism to understand the Java super keyword.

The Keyword “super” came into the picture with the concept of Inheritance

1. Use of super with Variables

This scenario occurs when a derived class and base class have the same data members. In

that case, there is a possibility of ambiguity r the JVM.

We can understand it more clearly using the following example:

Example

// super keyword in java example

 // Base class vehicle

class Vehicle {

 int maxSpeed = 120;

}

 // sub class Car extending vehicle

class Car extends Vehicle {

 int maxSpeed = 180;

https://www.geeksforgeeks.org/inheritance-in-java/
https://www.geeksforgeeks.org/polymorphism-in-java/
https://www.geeksforgeeks.org/jvm-works-jvm-architecture/

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
5

 void display()

 {

 // print maxSpeed of base class (vehicle)

 System.out.println("Maximum Speed: "+ super.maxSpeed);

 }

}

// Driver Program

class Test {

 public static void main(String[] args)

 {

 Car small = new Car();

 small.display();

 }

}

Output

Maximum Speed: 120

In the above example, both the base class and subclass have a member maxSpeed. We could

access the maxSpeed of the base class in subclass using super keyword.

2. Use of super with Methods

This is used when we want to call the parent class method. So whenever a parent and child

class have the same-named methods then to resolve ambiguity we use the super keyword.

This code snippet helps to understand the said usage of the super keyword.

Example

// super keyword in java example

// superclass Person

class Person {

 void message()

 {

 System.out.println("This is person class\n");

 }

}

// Subclass Student

class Student extends Person {

 void message()

 {

 System.out.println("This is student class");

 }

 // Note that display() is

 // only in Student class

 void display()

 {

https://www.geeksforgeeks.org/methods-in-java/

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
6

 // will invoke or call current

 // class message() method

 message();

 // will invoke or call parent

 // class message() method

 super.message();

 }

}

// Driver Program

class Test {

 public static void main(String args[])

 {

 Student s = new Student();

 // calling display() of Student

 s.display();

 }

}

Output

This is student class

This is person class

In the above example, we have seen that if we only call method message() then, the current

class message() is invoked but with the use of the super keyword, message() of the superclass

could also be invoked.

❖ Final Keyword In Java

The final keyword in java is used to restrict the user. The java final keyword can be used in

many context. Final can be:

1. variable

2. method

3. class

1) Java final variable

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
7

If you make any variable as final, you cannot change the value of final variable(It will be

constant).

Example of final variable

There is a final variable speedlimit, we are going to change the value of this variable, but It

can't be changed because final variable once assigned a value can never be changed.

class Bike9{

 final int speedlimit=90;//final variable

 void run(){

 speedlimit=400;

 }

 public static void main(String args[]){

 Bike9 obj=new Bike9();

 obj.run();

 }

}

Output:Compile Time Error

2) Java final method

If you make any method as final, you cannot override it.

Example of final method

class Bike{

 final void run(){System.out.println("running");}

}

class Honda extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda honda= new Honda();

 honda.run();

 }

}

Output:Compile Time Error

3) Java final class

If you make any class as final, you cannot extend it.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
8

Example of final class

final class Bike{}

class Honda1 extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda1 honda= new Honda1();

 honda.run();

 }

}

Output:Compile Time Error

❖ Method Overriding in Java

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in Java.

In other words, If a subclass provides the specific implementation of the method that has

been declared by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

o Method overriding is used to provide the specific implementation of a method which

is already provided by its superclass.

o Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. The method must have the same name as in the parent class

2. The method must have the same parameter as in the parent class.

3. There must be an IS-A relationship (inheritance).

Real example of Java Method Overriding

Consider a scenario where Bank is a class that provides functionality to get the rate of interest.

However, the rate of interest varies according to banks. For example, SBI, ICICI and AXIS banks

could provide 8%, 7%, and 9% rate of interest.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e7
9

class Bank{

int getRateOfInterest(){return 0;}

}

class SBI extends Bank{

int getRateOfInterest(){return 8;}

}

class ICICI extends Bank{

int getRateOfInterest(){return 7;}

}

class AXIS extends Bank{

int getRateOfInterest(){return 9;}

}

class Test2{

public static void main(String args[]){

SBI s=new SBI();

ICICI i=new ICICI();

AXIS a=new AXIS();

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());

}

}

Output:

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
0

SBI Rate of Interest: 8

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

❖ Dynamic binding

Dynamic binding in Java refers to the process of determining the specific implementation

of a method at runtime, based on the actual type of the object being referred to, rather

than the declared type of the reference variable. It is also known as late binding or runtime

polymorphism.

In Java, dynamic binding is primarily associated with method overriding, where a subclass

provides its own implementation of a method that is already defined in its superclass. The

specific method implementation to be executed is determined dynamically based on the

actual type of the object at runtime.

Here is an example of dynamic binding in java:

class Shape {

 public void draw() {

 System.out.println("Drawing a shape");

 }

}

class Circle extends Shape {

 public void draw() {

 System.out.println("Drawing a circle");

 }

}

class Rectangle extends Shape {

 public void draw() {

 System.out.println("Drawing a rectangle");

 }

}

public class Main {

 public static void main(String[] args) {

 Shape shape1 = new Circle();

 Shape shape2 = new Rectangle();

 shape1.draw(); // Output: Drawing a circle

 shape2.draw(); // Output: Drawing a rectangle

 }

}

In this example, we have a Shape class and two subclasses: Circle and Rectangle. Each

subclass overrides the draw() method inherited from the Shape class.

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
1

In the main method, we create two shape objects: shape1 of type Circle and shape2 of type

Rectangle. Although the reference type is Shape, the actual objects being referred to are

Circle and Rectangle.

When we call the draw() method on shape1 and shape2, the JVM dynamically binds the

appropriate version of the draw() method at runtime based on the actual type of the object.

Since shape1 refers to a Circle object, the draw() method in the Circle class is invoked, and

the output is "Drawing a circle". Similarly, since shape2 refers to a Rectangle object, the

draw() method in the Rectangle class is invoked, and the output is "Drawing a rectangle".

This dynamic binding allows us to write code that works with a generic reference type

(Shape), but at runtime, the correct method implementation is determined based on the

actual object type being referred to. This flexibility and polymorphic behaviour is one of the

key advantages of dynamic binding in Java.

❖ Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only functionality

to the user.

Another way, it shows only essential things to the user and hides the internal details, for

example, sending SMS where you type the text and send the message. You don't know the

internal processing about the message delivery.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

1) Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract and

non-abstract methods. It needs to be extended and its method implemented. It cannot be

instantiated.

Points to Remember

o An abstract class must be declared with an abstract keyword.

o It can have abstract and non-abstract methods.

o It cannot be instantiated.

o It can have constructors and static methods also.

Example of abstract class

abstract class A{

}

2) Abstract Method in Java

A method which is declared as abstract and does not have implementation is known as an

https://www.javatpoint.com/java-constructor

Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
2

abstract method.

Example of abstract method

abstract void printStatus();//no method body and abstract

Example of Abstract class

abstract class Animal {

 abstract void makeSound();

 public void eat() {

 System.out.println("I can eat.");

 }

}

class Dog extends Animal {

 public void makeSound() {

 System.out.println("Bow.. Bow..");

 }

}

class Main {

 public static void main(String[] args) {

 Dog d1 = new Dog();

 d1.makeSound();

 d1.eat();

 }

}

Output:

Bow.. Bow..

I can eat.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
3

 Interfaces vs. Abstract Classes

Aspect Interface Abstract Class

Inheritance Multiple interfaces can be

implemented

Single class inheritance

Methods No implementation (except defaults) Can have both abstract and

concrete

Fields Only constants (static and final) Can have instance variables

Constructors No constructors Can have constructors

Purpose Define a contract for behavior Base class for related

subclasses

Use Case Unrelated classes implementing

similar behavior

Closely related classes

sharing code

Access

Modifiers

Methods are implicitly public Can have private, protected,

or public

Performance Might be slower due to runtime

indirection

Generally faster

Example Usage

Interface Example (Java)

public interface Flyable {

 void fly();

}

class Bird implements Flyable {

 @Override

 public void fly() {

 System.out.println("Bird is flying.");

 }

}

class Plane implements Flyable {

 @Override

 public void fly() {

 System.out.println("Plane is flying.");

 }

}

class FlyableExample{

 public static void main(String[] args) {

 Flyable bird = new Bird();

 Flyable plan = new Plane();

 bird.fly();

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
4

 plan.fly();

 }

}

Output:

Bird is flying.

Plane is flying.

Abstract Class Example (Java)

public abstract class Animal {

 abstract void makeSound(); // Abstract method

 public void sleep() { // Concrete method

 System.out.println("Sleeping...");

 }

}

class Dog extends Animal {

 @Override

 public void makeSound() {

 System.out.println("Bark");

 }

}

class Cat extends Animal {

 @Override

 public void makeSound() {

 System.out.println("Meow");

 }

}

class AnimalExample{

 public static void main(String[] args) {

 Animal cat= new Cat();

 Animal dog = new Dog();

 cat.makeSound();

 cat.sleep();

 dog.makeSound();

 dog.sleep();

 }

}

Output:

Meow

Sleeping...

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
5

Bark

Sleeping...

In the interface example, Bird and Plane both implement the ability to fly(), but are

unrelated. In the abstract class example, Dog and Cat are related because they share

common behavior such as sleep(), but must implement their own version of

makeSound().

 Interfaces
1. Defining an Interface

An interface is essentially a contract that specifies what methods a class must

implement, without dictating how they should be implemented.

Syntax (Java Example):

public interface Vehicle {

 void start(); // abstract method

 void stop();

}

In this example, the Vehicle interface defines two methods, start() and stop(). Any class

that implements Vehicle must provide concrete implementations for these methods.

 Interfaces only contain method signatures (and optionally, constants).

 Methods in an interface are implicitly public and abstract.

 Since Java 8, interfaces can also include default methods with a body (an

implementation).

2. Implementing Interfaces

When a class implements an interface, it must provide implementations for all the

methods declared in the interface.

Syntax (Java Example):

public class Car implements Vehicle {

 @Override

 public void start() {

 System.out.println("Car is starting.");

 }

 @Override

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
6

 public void stop() {

 System.out.println("Car is stopping.");

 }

}

In this example, the Car class implements the Vehicle interface and provides

implementations for the start() and stop() methods.

 A class uses the implements keyword to implement an interface.

 All methods of the interface must be implemented unless the class is abstract.

3. Accessing Implementations Through Interface References

Once a class implements an interface, you can reference objects of that class via the

interface. This is key for polymorphism, as the interface provides a common

reference type.

Syntax (Java Example):

public class VehicleExample {

 public static void main(String[] args) {

 Vehicle myCar = new Car();

 myCar.start(); // Calls the start() method of Car

 myCar.stop(); // Calls the stop() method of Car

 }

}

 Car is starting.

 Car is stopping.

 The myCar variable is declared as a Vehicle (the interface), but it holds an instance

of Car (a class that implements Vehicle).

 This enables you to swap out different implementations of Vehicle without

changing the code that interacts with Vehicle.

Polymorphism Example:

Vehicle myBike = new Bike();

Vehicle myTruck = new Truck();

myBike.start();

myTruck.start();

Here, both Bike and Truck implement Vehicle. Using polymorphism, the same start()

method is called on different objects, with different behaviors based on the class.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
7

4. Extending Interfaces

An interface can extend another interface, allowing for more complex and

hierarchical behavior definitions. When an interface extends another interface, it

inherits all the methods from the parent interface.

Syntax (Java Example):

public interface ElectricVehicle extends Vehicle {

 void chargeBattery();

}

Here, ElectricVehicle extends the Vehicle interface, meaning any class that implements

ElectricVehicle must implement both start(), stop(), and chargeBattery().

Implementing the Extended Interface:

public class Tesla implements ElectricVehicle {

 @Override

 public void start() {

 System.out.println("Tesla is starting.");

 }

 @Override

 public void stop() {

 System.out.println("Tesla is stopping.");

 }

 @Override

 public void chargeBattery() {

 System.out.println("Tesla is charging.");

 }

}

public class VehicleExample {

 public static void main(String[] args) {

 ElectricVehicle myCar = new Tesla();

 myCar.start(); // Calls the start() method of Car

 myCar.stop(); // Calls the stop() method of Car

 myCar.chargeBattery();

 }

}

Tesla is starting.

Tesla is stopping.

Tesla is charging.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
8

Now, the Tesla class implements ElectricVehicle, so it must implement all the methods

from both the Vehicle interface (start() and stop()) and the ElectricVehicle interface

(chargeBattery()).

5. Interface Inheritance: Example

You can use interfaces and inheritance together for multiple levels of abstraction:

public interface WaterVehicle extends Vehicle {

 void anchor();

}

 class Boat implements WaterVehicle {

 @Override

 public void start() {

 System.out.println("Boat is starting.");

 }

 @Override

 public void stop() {

 System.out.println("Boat is stopping.");

 }

 @Override

 public void anchor() {

 System.out.println("Boat is anchoring.");

 }

}

public class VehicleExample {

 public static void main(String[] args) {

 WaterVehicle wv = new Boat();

 wv.start();

 wv.stop();

 wv.anchor();

 }

}

Boat is starting.

Boat is stopping.

Boat is anchoring.

Here, Boat implements WaterVehicle, which means it must implement methods from

both Vehicle (start(), stop()) and WaterVehicle (anchor()).

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e8
9

Key Concepts:

1. Defining an Interface: Use interface keyword; specify abstract methods.

o Example: public interface Vehicle { void start(); void stop(); }

2. Implementing an Interface: Use implements keyword in a class to define the

body of methods from the interface.

o Example: public class Car implements Vehicle { @Override void start() { } @Override

void stop() { } }

3. Accessing Implementations Through Interface References: Use the interface as

a reference type to call methods from an implemented class.

o Example: Vehicle myCar = new Car(); myCar.start();

4. Extending Interfaces: An interface can extend another interface to inherit its

methods.

o Example: public interface ElectricVehicle extends Vehicle { void chargeBattery(); }

 Packages

packages are used to group related classes, interfaces, and sub-packages, helping

organize code and avoid naming conflicts.

1. Defining a Package

A package in Java is a namespace that organizes classes and interfaces. Packages

allow developers to manage large projects by grouping related classes into specific

namespaces.

 To define a package in Java, you use the package keyword at the beginning of

the Java file, followed by the package name.

Example (Java):

package com.example.animals;

public class Dog {

 public void bark() {

 System.out.println("Woof!");

 }

}

In this example:

 The Dog class is part of the com.example.animals package. This package name

follows the reverse domain name convention.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
0

2. Creating a Package

To create a package:

 Step 1: Define the package in the source code using the package keyword (as

shown above).

 Step 2: Save the file in a directory structure that matches the package name.

For example:

o For the com.example.animals package, the source file should be saved in

the directory structure com/example/animals/.

Example Directory Structure:

java/

 com/

 example/

 animals/

 Dog.java

Java’s package system is tied to the filesystem, meaning that the directory structure

should match the package structure.

3. Accessing a Package

Once a class is part of a package, it can be accessed by other classes or packages. To

use a class from a package in another class, you need to import the package.

 Default package: If no package is declared, the class is placed in the default

package (not recommended for large projects).

Example (Java):

package com.example.zoo;

import com.example.animals.Dog; // Importing Dog class from com.example.animals package

public class Zoo {

 public static void main(String[] args) {

 Dog dog = new Dog();

 dog.bark(); // Using the imported Dog class

 }

}

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
1

In this example:

 The Zoo class is in the com.example.zoo package.

 The Dog class from the com.example.animals package is imported using the import

statement.

4. Understanding CLASSPATH

The CLASSPATH is an environment variable that tells the Java Virtual Machine (JVM)

and Java compiler where to look for user-defined classes and packages during

program execution.

 The CLASSPATH includes:

o The directory structure where compiled .class files are located.

o External libraries (JAR files) that might be needed during execution.

By default, the JVM searches the current directory (i.e., .) if no CLASSPATH is defined.

Setting CLASSPATH:

 You can set the CLASSPATH using the -cp or -classpath option when running the

javac or java commands.

 Alternatively, you can set it as an environment variable in your operating

system.

Example (Command Line):

 D:\java> javac -d . Dog.java

 D:\java> javac -d . Zoo.java

 D:\java> java com.example.zoo.Zoo

Output:Woof!

In this example, the JVM is instructed to look in D:\java for the classes.

5. Importing Packages

To use classes from a different package, you need to import them using the import

statement. This tells the compiler where to look for the class. There are two common

ways to import packages:

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
2

a) Single-Class Import:

Imports only one class from a package.

import com.example.animals.Dog; // Imports only the Dog class

b) Package Import (Wildcard):

Imports all the classes from a package. Be mindful that this does not include sub-

packages.

import com.example.animals.*; // Imports all classes from the com.example.animals package

Static Imports:

You can also import static members (methods, constants) of a class directly so that

you don't need to qualify them with the class name.

import static java.lang.Math.PI;

import static java.lang.Math.sqrt;

public class Circle {

 public static void main(String[] args) {

 System.out.println(PI); // No need to reference Math.PI

 System.out.println(sqrt(25)); // No need to reference Math.sqrt

 }

}

3.141592653589793

5.0

 Exception Handling in Java

Exception handling is a mechanism in Java that allows a program to deal with

runtime errors, ensuring that the program can continue running or terminate

gracefully rather than crashing unexpectedly. Here's a detailed overview:

1. Benefits of Exception Handling

 Enhanced Robustness: By handling exceptions, a program can deal with

unexpected conditions without crashing. This improves the reliability of

applications and ensures they continue to operate smoothly.

 Separation of Concerns: Exception handling allows you to separate error-handling

code from the regular code. This makes the code cleaner and easier to

understand and maintain.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
3

 Graceful Error Handling: It enables the application to manage errors in a

controlled manner, providing users with meaningful error messages and allowing

for recovery or corrective actions.

 Debugging and Logging: Exceptions can be caught and logged, providing

valuable information about errors that occur during runtime. This helps

developers diagnose and fix issues more effectively.

 Code Readability: By using try, catch, finally, and custom exception classes, the code

that deals with errors is distinct from the main logic, enhancing overall readability

and maintainability.

2. Classification of Exceptions

Exceptions in Java are categorized into two main types:

Checked Exceptions

 Definition: Checked exceptions are those that the Java compiler forces you to

handle or declare. They are checked at compile-time, and the programmer

must either handle them using a try-catch block or declare them in the method

signature using the throws keyword.

 Examples:

o IOException: Thrown when an I/O operation fails or is interrupted.

o SQLException: Thrown when a database access error occurs.

o ClassNotFoundException: Thrown when an application tries to load a class

through its name, but the class cannot be found.

 Handling: You must either catch these exceptions or declare them in the

method signature. This requirement ensures that the code dealing with

potential failures is written explicitly.

public void readFile(String fileName) throws IOException {

 FileReader file = new FileReader(fileName);

 // Read file content

 file.close();

}

Unchecked Exceptions

 Definition: Unchecked exceptions are those that are not checked at compile-

time. They are subclasses of RuntimeException and typically represent

programming errors or logical errors that can be avoided through better

programming practices.

 Examples:

o NullPointerException: Thrown when an application attempts to use null

where an object is required.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
4

o ArrayIndexOutOfBoundsException: Thrown when an array is accessed with an

illegal index.

o IllegalArgumentException: Thrown when a method receives an argument

that is inappropriate or illegal.

 Handling: These exceptions do not need to be declared in the method

signature, and you are not required to handle them. They are usually handled

through proper validation and error-checking practices within the code.

public void processArray(int[] array) {

 for (int i = 0; i <= array.length; i++) {

 // Potential ArrayIndexOutOfBoundsException

 System.out.println(array[i]);

 }

}

 Exception Hierarchy

In Java, exceptions are organized in a hierarchical structure rooted in the Throwable

class. Understanding this hierarchy is key to effective exception handling and

designing robust error management systems. Here’s a detailed look at the exception

hierarchy:

Exception Hierarchy Overview

Throwable

 The root class of the exception hierarchy. All exceptions and errors in Java are

derived from this class.
o Exception
o Error

1. Exception

o This class represents exceptional conditions that a program should

catch. It is the base class for all checked exceptions and some runtime

exceptions.
 IOException
 SQLException
 RuntimeException

2. Error

o Represents serious problems that applications should not typically

catch. These are used by the JVM to indicate severe issues that usually

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
5

cannot be handled by the application itself (e.g., OutOfMemoryError,

StackOverflowError).

Detailed Breakdown

1. Exception

 Description: The superclass of all exceptions that can be handled. It is further

divided into checked exceptions and unchecked exceptions.

 Checked Exceptions: These are exceptions that must be either caught or declared

in the method signature using the throws keyword. They are typically related to

external factors or resources that may fail.

o Examples:

 IOException: Represents I/O errors (e.g., file not found).

 SQLException: Represents database access errors.

 ClassNotFoundException: Thrown when a class cannot be located.

 Unchecked Exceptions: These are exceptions that do not need to be explicitly

handled or declared. They are usually due to programming errors and are

subclasses of RuntimeException.

o Examples:

 NullPointerException: Thrown when a null reference is accessed.

 ArrayIndexOutOfBoundsException: Thrown when accessing an array with

an illegal index.

 IllegalArgumentException: Thrown when a method receives an illegal or

inappropriate argument.

2. Error

 Description: Represents serious issues that are not intended to be caught by

programs. These are generally caused by the JVM itself and are usually fatal.

 Examples:

o OutOfMemoryError: Indicates that the JVM has run out of memory.

o StackOverflowError: Thrown when a stack overflow occurs (e.g., excessive

recursion).

Hierarchy Diagram

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
6

Here's a simplified diagram of the exception hierarchy:

Throwable

 ├── Error

 │ ├── OutOfMemoryError

 │ ├── StackOverflowError

 │ └── ...

 └── Exception

 ├── IOException

 │ ├── FileNotFoundException

 │ └── EOFException

 ├── SQLException

 ├── RuntimeException

 │ ├── NullPointerException

 │ ├── ArrayIndexOutOfBoundsException

 │ └── IllegalArgumentException

 └── ...

 Java try-catch block and finally block
1. Java try block

Java try block is used to enclose the code that might throw an exception. It must be

used within the method.

If an exception occurs at the particular statement in the try block, the rest of the

block code will not execute. So, it is recommended not to keep the code in try block

that will not throw an exception.

Java try block must be followed by either catch or finally block.

Syntax of Java try-catch

try{

//code that may throw an exception

}

catch(Exception_class_Name ref){

}

Syntax of try-finally block

try{

//code that may throw an exception

}

finally{

}

2. Java catch block

Java catch block is used to handle the Exception by declaring the type of exception

within the parameter. The declared exception must be the parent class exception (

i.e., Exception) or the generated exception type. However, the good approach is to

declare the generated type of exception.

The catch block must be used after the try block only. You can use multiple catch

block with a single try block.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
7

Internal Working of Java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not

handled, JVM provides a default exception handler that performs the following tasks:

Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if the application programmer handles the exception, the normal flow of the

application is maintained, i.e., rest of the code is executed.

3. Java finally block

Java finally block is a block used to execute important code such as closing the

connection, etc.

Java finally block is always executed whether an exception is handled or not.

Therefore, it contains all the necessary statements that need to be printed regardless

of the exception occurs or not.

The finally block follows the try-catch block.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
8

Flowchart of finally block

o finally block in Java can be used to put "cleanup" code such as closing a file,

closing connection, etc.

o The important statements to be printed can be placed in the finally block.

import java.util.Scanner;

public class ExceptionHandle {

 public static void main(String args[]){

 Scanner s= new Scanner(System.in);

 System.out.println("enter numerator and denominator");

 int a = s.nextInt();

 int b = s.nextInt();

 try{

 int data=a/b;

 System.out.println(a+"/"+b+"="+data);

 }

 catch(ArithmeticException e){

 System.out.println(e);

 }

 finally {

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e9
9

 System.out.println("finally block is always executed");

 }

 }

 }

Output1:

enter numerator and denominator

10

2

10/2=5

finally block is always executed

Output2:

enter numerator and denominator

10

0

java.lang.ArithmeticException: / by zero

finally block is always executed.

 Rethrowing Exceptions

Rethrowing an exception refers to the practice of catching an exception in a catch

block and throwing it again, allowing the exception to propagate further up the call

stack. This is useful when you want to perform some action (e.g., logging) but still

want the exception to be handled by another part of the program.

Example:

 try {

 // Code that may throw an exception

} catch (Exception e) {

 // Perform some actions like logging

 throw e; // Rethrowing the same exception

}

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

0

Rethrowing with a new exception:

 You can also wrap the original exception in a new one:

try {

 // Code that may throw an exception

} catch (IOException e) {

 throw new CustomException("Custom message", e);

// Wrapping the original exception

}

 Exception Specification (Checked and Unchecked Exceptions)

In Java, exception specification is handled through the throws keyword in the

method signature. It indicates which exceptions a method may throw, forcing the

caller to either handle or declare the exception.

 Checked exceptions: Must be caught or declared in the method signature.

 public void readFile() throws IOException {

 // Code that might throw IOException

}

 Unchecked exceptions: These are not required to be declared in the method

signature. They are typically subclasses of RuntimeException.

 Built-in Exceptions

Java provides many built-in exceptions. These can be categorized as:

 Checked Exceptions:

o IOException

o SQLException

o FileNotFoundException

o ClassNotFoundException

 Unchecked Exceptions (RuntimeException):

o NullPointerException

o ArrayIndexOutOfBoundsException

o ArithmeticException

o IllegalArgumentException

These exceptions represent common errors that can occur during program

execution.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

1

 Creating Custom Exception Subclasses

In Java, you can create your own exception classes to represent specific application-

level errors. These custom exceptions can extend either the Exception class (for

checked exceptions) or the RuntimeException class (for unchecked exceptions).

 Creating a custom checked exception:

public class MyCheckedException extends Exception {

 public MyCheckedException(String message) {

 super(message);

 }

}

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

2

 Thread:

 Before introducing the thread concept, we were unable to run more than one task

in parallel. It was a drawback, and to remove that drawback, Thread Concept was

introduced.

 A Thread is a very light-weighted process, or we can say the smallest part of the

process that allows a program to operate more efficiently by running multiple

tasks simultaneously.

 In order to perform complicated tasks in the background, we used

the Threadconcept in Java. All the tasks are executed without affecting the main

program.

 In a program or process, all the threads have their own separate path for

execution, so each thread of a process is independent.

 Another benefit of using thread is that if a thread gets an exception or an error at

the time of its execution, it doesn't affect the execution of the other threads.

 All the threads share a common memory and have their own stack, local variables

and program counter. When multiple threads are executed in parallel at the same

time, this process is known as Multithreading.

 Single Tasking:

Single-tasking in Java threads is when only one thread is executed at a time. This

is achieved by using synchronization and locks to ensure that only one thread can

access a particular resource at a time. Single-tasking is useful in situations where

multiple threads accessing a resource could cause data corruption or other issues.

 Multi Tasking:

Multitasking in Java threads is when multiple threads are executed

simultaneously. This is useful in situations where an application needs to perform

multiple tasks at the same time, such as in gaming, animation, or multimedia

applications. Multitasking is achieved by creating multiple threads and running

them concurrently.

https://www.javatpoint.com/multithreading-in-java

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

3

 Multithreading vs. multiprocessing

Multithreading

Multithreading is a programming technique that assigns multiple code segments to a

single process. These code segments, also referred to as threads, run concurrently

and parallel to each other. These threads share the same memory space within a

parent process. This saves system memory, increases computing speed and improves

application performance.

For example, if you're working on your computer, you might have multiple browser

tabs open while searching the internet. You might also be listening to music through

a desktop application at the same time. The internet browser and music application

represent two different processes, even though they are operating simultaneously.

However, the multiple tabs you have open while browsing the internet represent

threads of your internet browser, which is the parent process.

Multiprocessing

Multiprocessing refers to a system that has more than two central processing units

(CPUs). Every additional CPU added to a system increases its speed, power and

memory. This allows users to run multiple processes simultaneously. Each CPU may

also function independently, and some CPUs may remain idle if they don't have

anything to process. This can improve the reliability of a system because unused

CPUs can act as a backup if technical issues arise.

 There are two primary categories of multiprocessing systems:

 Symmetric multiprocessing: This multiprocessing system uses computer hardware

and software that incorporates two or more identical processors connected by

one memory space. These processors have complete access to all input and

output devices and receive equal treatment.

 Asymmetric multiprocessing: In this multiprocessing system, different CPUs have

access to separate input and output (I/O) devices. For example, one CPU might

perform I/O operations, while another CPU might focus on maintaining the

operating system.

Multithreading vs. multiprocessing

While multithreading and multiprocessing can both be used to increase the

computing power of a system, there are some key differences between these

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

4

approaches. Here are some of the primary ways these methods differ from one

another:

• Multiprocessing uses two or more CPUs to increase computing power,

whereas multithreading uses a single process with multiple code segments to

increase computing power.

• Multithreading focuses on generating computing threads from a single

process, whereas multiprocessing increases computing power by adding

CPUs.

• Multiprocessing is used to create a more reliable system, whereas

multithreading is used to create threads that run parallel to each other.

• multithreading is quick to create and requires few resources, whereas

multiprocessing requires a significant amount of time and specific resources

to create.

• Multiprocessing executes many processes simultaneously, whereas

multithreading executes many threads simultaneously.

• Multithreading uses a common address space for all the threads, whereas

multiprocessing creates a separate address space for each process.

Benefits of multithreading

Here are some of the key benefits of multithreading:

• It requires less memory storage.

• Accessing memory is easier since threads share the same parent process.

• Switching between threads is fast and efficient.

• It's faster to generate new threads within an existing process than to create an

entirely new process.

• All threads share one process memory pool and the same address space.

• Threads are more lightweight and have lower overhead.

• The cost of communication between threads is relatively low.

• Creating responsive user interfaces (UIs) is easy.

Drawbacks of multithreading

• Here are some potential drawbacks associated with multithreading:

• A multithreading system cannot be interrupted.

• The code can be more challenging to understand.

• The overhead associated with managing different threads may be too costly

for basic tasks.

• Debugging and troubleshooting issues may become more challenging

because the code can be complex.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

5

 Lifecycle of Thread:

A thread in Java at any point of time exists in any one of the following states. A

thread lies only in one of the shown states at any instant:

1. New

2. Runnable

3. Blocked/Waiting

4. Timed Waiting

5. Terminated

The diagram shown below represents various states of a thread at any instant in

time.

1. New Thread:

 When a new thread is created, it is in the new state. The thread has not

yet started to run when the thread is in this state. When a thread lies in

the new state, its code is yet to be run and hasn’t started to execute.

2. Runnable State:

A thread that is ready to run is moved to a runnable state. In this state, a

thread might actually be running or it might be ready to run at any

instant of time. It is the responsibility of the thread scheduler to give the

thread, time to run.

A multi-threaded program allocates a fixed amount of time to each

individual thread. Each and every thread runs for a short while and then

pauses and relinquishes the CPU to another thread so that other threads

can get a chance to run. When this happens, all such threads that are

ready to run, waiting for the CPU and the currently running thread lie in a

runnable state.

3. Blocked/Waiting state:

https://www.geeksforgeeks.org/multithreading-in-java/

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

6

 When a thread is temporarily inactive, then it’s in one of the following

states:

 Blocked

 Waiting

4. Timed Waiting:

A thread lies in a timed waiting state when it calls a method with a time-

out parameter. A thread lies in this state until the timeout is completed or

until a notification is received. For example, when a thread calls sleep or a

conditional wait, it is moved to a timed waiting state.

5. Terminated State:

A thread terminates because of either of the following reasons:

 Because it exits normally. This happens when the code of the thread

has been entirely executed by the program.

 Because there occurred some unusual erroneous event, like

segmentation fault or an unhandled exception.

Implementing the Thread States in Java

In Java, to get the current state of the thread, use Thread.getState() method to get

the current state of the thread

public class MyThreadState extends Thread {

 public void run() {

 System.out.println(Thread.currentThread().getName() + " is running");

 }

 public static void main(String[] args) throws InterruptedException {

 Thread t1 = new MyThreadState();

 System.out.println("State: " + t1.getState());

 t1.start();

 System.out.println("State after start(): " + t1.getState());

 t1.join();

 System.out.println("State after join(): " + t1.getState());

 }

}

State: NEW

State after start(): RUNNABLE

Thread-0 is running

State after join(): TERMINATED

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

7

 Creating and running a Thread :

We can create Threads in java using two ways, namely :

1. Extending Thread Class

2. Implementing a Runnable interface

1. By Extending Thread Class :

We can run Threads in Java by using Thread Class, which provides constructors and

methods for creating and performing operations on a Thread, which extends a

Thread class that can implement Runnable Interface. We use the following

constructors for creating the Thread:

 Thread

 Thread(Runnable r)

 Thread(String name)

 Thread(Runnable r, String name)

Example:

import java.io.*;

import java.util.*;

public class Demo extends Thread

 {

 // initiated run method for Thread

 public void run()

 {

 System.out.println("Thread Started Running...");

 }

 class DemoExample

{

 public static void main(String[] args)

 {

 Demo d1 = new Demo();

 // Invoking Thread using start() method

 d1.start();

 }

}

 }

Output:

Thread Started Running...

2.By Implementing a Runnable interface:

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

8

The Runnable interface should be implemented by any class whose instances are

intended to be executed by a thread. Runnable interface have only one method

named run().

public void run(): is used to perform action for a thread.

Example:

import java.io.*;

import java.util.*;

 class Demo2 implements Runnable

 {

 // method to start Thread

 public void run()

 {

 System.out.println("Thread is Running Successfully");

 }

 class DemoExample2

{

 public static void main(String[] args)

 {

 Demo2 d2= new Demo2();

 // initializing Thread Object

 Thread t1 = new Thread(d2);

 t1.start();

 }

}

 }

Output:

Thread is Running Successfully

 Interrupting Threads

Interrupting threads is a mechanism by which a thread can be signaled that it should

stop or change its activity. This doesn't immediately terminate the thread; instead, it

sets a flag or raises an exception that the thread can handle.

Java provides the interrupt() method, which raises an InterruptedException or sets

the interrupt flag, depending on the thread's state. Here's how the interruption

works:

1. Calling interrupt():

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
0

9

o If the thread is in a blocking operation (e.g., sleep(), wait(), or join()), it throws

an InterruptedException when interrupted.

o If the thread is not in a blocking operation, it doesn't immediately stop;

instead, its interrupted status is set, and the thread continues running.

2. Checking the interruption status:

o You can check whether a thread has been interrupted using the isInterrupted()

method.

o The interrupted() method checks and clears the interrupt flag.

Example in Java:

public class InterruptExample extends Thread {

 public void run() {

 try {

 for (int i = 0; i < 10; i++) {

 System.out.println("Working on task " + i);

 Thread.sleep(1000);

 }

 } catch (InterruptedException e) {

 System.out.println("Thread was interrupted.");

 }

 }

 public static void main(String[] args) {

 InterruptExample thread = new InterruptExample();

 thread.start();

 try {

 Thread.sleep(3000);

 thread.interrupt();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

Explanation:

 The run() method simulates a task by printing messages and sleeping for 1

second between iterations.

 If the thread is interrupted while sleeping, it catches an InterruptedException

and exits.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

0

 Priority of a Thread in Java

Every Java thread has a priority that helps the operating system determine the order

in which threads are scheduled. You can get and set the priority of a Thread. Thread

class provides methods and constants for working with the priorities of a Thread.

Threads with higher priority are more important to a program and should be

allocated processor time before lower-priority threads. However, thread priorities

cannot guarantee the order in which threads execute and are very much platform

dependent.

Built-in Property Constants of Thread Class

Java thread priorities are in the range between MIN_PRIORITY (a constant of 1) and

MAX_PRIORITY (a constant of 10). By default, every thread is given priority

NORM_PRIORITY (a constant of 5).

 MIN_PRIORITY: Specifies the minimum priority that a thread can have.

 NORM_PRIORITY: Specifies the default priority that a thread is assigned.

 MAX_PRIORITY: Specifies the maximum priority that a thread can have.

Thread Priority Setter and Getter Methods

 Thread.getPriority() Method: This method is used to get the priority of a

thread.

 Thread.setPriority() Method: This method is used to set the priority of a

thread, it accepts the priority value and updates an existing priority with the

given priority.

import java.lang.*;

public class ThreadPriorityExample extends Thread{

 public void run() {

System.out.println("Inside the run() method");

}

public static void main(String args[]) {

ThreadPriorityExample th1 = new ThreadPriorityExample();

ThreadPriorityExample th2 = new ThreadPriorityExample();

ThreadPriorityExample th3 = new ThreadPriorityExample();

System.out.println("Priority of the thread th1 is : " + th1.getPriority());

System.out.println("Priority of the thread th2 is : " + th2.getPriority());

System.out.println("Priority of the thread th2 is : " + th2.getPriority());

th1.setPriority(6);

https://www.tutorialspoint.com/operating_system/index.htm
https://www.tutorialspoint.com/java/java_multithreading.htm
https://www.tutorialspoint.com/java/lang/thread_getpriority.htm
https://www.tutorialspoint.com/java/lang/thread_setpriority.htm

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

1

th2.setPriority(3);

th3.setPriority(9);

System.out.println("Priority of the thread th1 is : " + th1.getPriority());

System.out.println("Priority of the thread th2 is : " + th2.getPriority());

System.out.println("Priority of the thread th3 is : " + th3.getPriority());

System.out.println("Currently Executing The Thread : " +

Thread.currentThread().getName());

System.out.println("Priority of the main thread is : " +

Thread.currentThread().getPriority());

Thread.currentThread().setPriority(10);

System.out.println("Priority of the main thread is : " +

Thread.currentThread().getPriority());

}

}

Output:

Priority of the thread th1 is : 5

Priority of the thread th2 is : 5

Priority of the thread th2 is : 5

Priority of the thread th1 is : 6

Priority of the thread th2 is : 3

Priority of the thread th3 is : 9

Currently Executing The Thread : main

Priority of the main thread is : 5

Priority of the main thread is : 10

 Thread synchronization

Thread synchronization in Java is a way of programming several threads to carry out

independent tasks easily. It is capable of controlling access to multiple threads to a

particular shared resource.

The main reasons for using thread synchronization in Java are as follows:

 To prevent interference between threads.

 To prevent the problem of consistency.

Types of Synchronization

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

2

There are two types of thread synchronization in Java:

1. Process synchronization:

Process synchronization ensures that multiple processes in a system coordinate their

actions to avoid conflicts and maintain consistency.

2. Thread synchronization:

Thread synchronization involves coordinating the execution of threads to ensure

proper sharing of resources and prevent data inconsistency in a multithreaded

environment.

Thread Synchronization

Thread synchronization refers to the concept where only one thread is executed at a

time while other threads are in the waiting state. This process is called thread

synchronization. It is used because it avoids interference of thread and the problem

of inconsistency. There are two types of thread synchronization in Java:

 Mutual exclusive- It will keep the threads from interfering with each other

while sharing any resources.

 Inter-thread communication- It is a mechanism in Java in which a thread

running in the critical section is paused and another thread is allowed to enter

or lock the same critical section that is executed.

 Thread Communication/Inter- Thread Communication:

 Inter-thread communication or Co-operation is all about allowing synchronized

threads to communicate with each other.

 Cooperation (Inter-thread communication) is a mechanism in which a thread is

paused running in its critical section and another thread is allowed to enter (or

lock) in the same critical section to be executed.

 It is implemented by following methods of Object class:

o wait()

o notify()

o notifyAll()

1) wait() method:

The wait() method causes current thread to release the lock and wait until either

another thread invokes the notify() method or the notifyAll() method for this object,

or a specified amount of time has elapsed.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

3

The current thread must own this object's monitor, so it must be called from the

synchronized method only otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException It waits until object is notified.

public final void wait(long timeout)throws

InterruptedException

It waits for the specified amount of

time.

2) notify() method:

The notify() method wakes up a single thread that is waiting on this object's monitor.

If any threads are waiting on this object, one of them is chosen to be awakened. The

choice is arbitrary and occurs at the discretion of the implementation.

Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor.

Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication:

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.

2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object.

Otherwise it releases the lock and exits.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

4

4. If you call notify() or notifyAll() method, thread moves to the notified state

(runnable state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor

state of the object.

 The Stream Classes in Java

In Java, streams are used to perform input and output (I/O) operations. There are two

major types of streams:

1. Byte Streams (for handling raw binary data)

2. Character Streams (for handling textual data)

1. Byte Streams

 Description: Byte streams are used to handle raw binary data like reading and

writing binary files (images, audio, etc.). They operate on bytes (8-bit data), and

all byte stream classes are derived from the abstract classes InputStream and

OutputStream.

Common Byte Stream Classes:

 InputStream: The superclass for all byte input streams (e.g., FileInputStream,

ByteArrayInputStream).

 OutputStream: The superclass for all byte output streams (e.g., FileOutputStream,

ByteArrayOutputStream).

Writing to a File with FileOutputStream

import java.io.FileOutputStream;

import java.io.IOException;

public class WriteBytesExample {

 public static void main(String[] args) {

 try (FileOutputStream fos = new FileOutputStream("output.dat")) {

 byte[] data = {65, 66, 67};

 fos.write(data);

 System.out.println("Data written to file sucessfully.");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

5

Output:

Data written to file sucessfully.

Reading from a File with FileInputStream

import java.io.FileInputStream;

import java.io.IOException;

public class ReadBytesExample {

 public static void main(String[] args) {

 try (FileInputStream fis = new FileInputStream("output.dat")) {

 int byteData;

 while ((byteData = fis.read()) != -1) {

 System.out.print((char) byteData);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Output:

ABC

2. Character Streams

 Character streams are used to handle text data (Unicode characters). They work with

16-bit Unicode characters and are derived from the abstract classes Reader and Writer.

In Java, a character stream is used to read and write data in characters (as opposed

to bytes), which is particularly useful for handling text data. Character streams make

it easier to work with text files, allowing for proper handling of character encoding.

Key Classes in Character Streams

1. FileReader: Used to read character files.

FileReader reader = new FileReader("example.txt");

2. FileWriter: Used to write characters to a file.

FileWriter writer = new FileWriter("example.txt");

3. BufferedReader: Buffers the input for efficiency and provides methods to read

lines of text.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

6

BufferedReader bufferedReader = new BufferedReader(new FileReader("example.txt"));

4. BufferedWriter: Buffers the output for efficiency and provides methods to

write text to a file.

BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter("example.txt"));

import java.io.*;

public class CharacterStreamExample {

 public static void main(String[] args) {

 String inputFile = "input.txt";

 String outputFile = "output.txt";

 try (BufferedReader reader = new BufferedReader(new FileReader(inputFile));

 BufferedWriter writer = new BufferedWriter(new FileWriter(outputFile))) {

 String line;

 while ((line = reader.readLine()) != null) {

 writer.write(line);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

 Reading Console Input and Writing Console Output

Java provides several ways to handle console input and output. The most commonly

used methods are through the Scanner class for input and System.out for output.

Additionally, the Console class is useful for handling sensitive data input such as

passwords.

1. Reading Console Input

There are two popular ways to read input from the console in Java:

1.1 Using the Scanner Class

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

7

The Scanner class, introduced in Java 5, simplifies the process of reading primitive

types and strings from the console.

Steps to use Scanner:

1. Import the Scanner class: import java.util.Scanner;

2. Create a Scanner object: Scanner sc = new Scanner(System.in);

3. Use methods like next(), nextLine(), nextInt(), nextDouble(), etc., to read input.

Example:

import java.util.Scanner;

public class ConsoleInputExample {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter your name: ");

 String name = scanner.nextLine();

 System.out.print("Enter your age: ");

 int age = scanner.nextInt();

 System.out.print("Enter your GPA: ");

 double gpa = scanner.nextDouble();

 System.out.println("Name: " + name);

 System.out.println("Age: " + age);

 System.out.println("GPA: " + gpa);

 scanner.close();

 }

}

Enter your name: Ramu

Enter your age: 24

Enter your GPA: 9.7

Name: Ramu

Age: 24

GPA: 9.7

In the above example:

 nextLine() reads a line of text.

 nextInt() reads an integer.

 nextDouble() reads a floating-point number.

1.2 Using the BufferedReader Class

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

8

Before Scanner was introduced, the BufferedReader class was commonly used to read

input. It's still useful if you want to read large input efficiently.

Steps to use BufferedReader:

1. Create a BufferedReader object wrapping InputStreamReader(System.in).

2. Use the readLine() method to read input.

Example:

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class ConsoleInputWithBufferedReader {

 public static void main(String[] args) throws IOException {

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

 System.out.print("Enter your name: ");

 String name = reader.readLine();

 System.out.print("Enter your age: ");

 int age = Integer.parseInt(reader.readLine());

 System.out.println("Hello, " + name + ". You are " + age + " years old.");

 }

}

Here, BufferedReader reads input as a string and you can manually convert it to the

desired data type (e.g., Integer.parseInt()).

2. Writing Console Output

Writing output to the console is straightforward in Java. You can use the

System.out.print() and System.out.println() methods:

 print(): Outputs data without a newline at the end.

 println(): Outputs data followed by a newline.

 printf(): Formats output, similar to C's printf() function.

Example:

public class ConsoleOutputExample {

 public static void main(String[] args) {

 System.out.print("Hello ");

 System.out.print("World");

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
1

9

 System.out.println();

 System.out.println("Java programming is fun!");

 String language = "Java";

 int level = 5;

 System.out.printf("I am learning %s at level %d.%n", language, level);

 }

}

3. The Console Class for Input

The Console class, introduced in Java 6, provides a more specialized way to read from

and write to the console. It's especially useful for reading sensitive information like

passwords because it offers methods like readPassword(), which do not echo the

characters typed.

Example using Console:

import java.io.Console;

public class ConsoleClassExample {

 public static void main(String[] args) {

 Console console = System.console();

 if (console != null) {

 String username = console.readLine("Enter your username: ");

 char[] password = console.readPassword("Enter your password: ");

 System.out.println("Username: " + username);

 System.out.println("Password: " + new String(password));

 } else {

 System.out.println("No console available.");

 }

 }

}

Output:

Enter your username: Ramu

Enter your password:

Username: Ramu

Password: ramachandra

This example uses the readLine() method for standard input and readPassword() for

sensitive input, which hides the input as it is typed.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

0

 Reading Console Input:

o Use Scanner for simple and efficient input reading.

o Use BufferedReader for faster reading of larger inputs.

o Use the Console class for handling sensitive input like passwords.

 Writing Console Output:

o Use System.out.print() and System.out.println() for output.

o Use System.out.printf() for formatted output.

 File Class:

The File class in Java is part of the java.io package and represents a file or directory

path in an abstract manner. It provides methods to create, delete, and check

properties of files and directories, but it does not provide methods to read or write

file content directly. Instead, it works in conjunction with input and output streams to

manage file contents.

Key Features of the File Class:

 File and Directory Creation: You can create new files and directories.

 File Information: Retrieve information about files (size, permissions, last modified,

etc.).

 Delete Files/Directories: Remove files or directories from the file system.

 Path Manipulation: Manipulate file paths and get various attributes.

Common Methods of the File Class:

 boolean createNewFile(): Creates a new, empty file if it does not already exist.

 boolean delete(): Deletes the file or directory.

 boolean exists(): Tests whether the file or directory exists.

 String getName(): Returns the name of the file or directory.

 long length(): Returns the length of the file in bytes.

 boolean isDirectory(): Tests whether the file is a directory.

 boolean isFile(): Tests whether the file is a regular file.

 String[] list(): Returns an array of strings naming the files and directories in the

directory.

Example:

import java.io.*;

public class FileDemo{

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

1

 public static void main(String[] args){

 try{

 File file = new File("javaFile123.txt");

 if (file.createNewFile()){

 System.out.println("New File is created!");

 }

 else{

 System.out.println("File already exists.");

 }

 }

 catch (IOException e){

 e.printStackTrace();

 }

 }

}

Output:

New File is created!

 Reading and Writing Files

To read from and write to files in Java, you typically use classes from the java.io package,

such as FileReader, FileWriter, BufferedReader, and BufferedWriter.

1. Reading Files

You can read files in Java using several methods. The most common way is to use

BufferedReader in combination with FileReader.

Example of Reading a File with BufferedReader:

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

public class FileReadingExample {

 public static void main(String[] args) {

 String filePath = "input.txt";

 try (BufferedReader reader = new BufferedReader(new

FileReader(filePath))) {

 String line;

 while ((line = reader.readLine()) != null) {

 System.out.println(line);

 }

 } catch (IOException e) {

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

2

 e.printStackTrace();

 }

 }

}

Output:

Hello java program

2. Writing to Files

To write to a file, you can use BufferedWriter along with FileWriter. This method allows
you to write text to a file efficiently.

Example of Writing to a File with BufferedWriter:

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

public class FileWritingExample {

 public static void main(String[] args) {

 String filePath = "output.txt";

 try (BufferedWriter writer = new BufferedWriter(new

FileWriter(filePath))) {

 writer.write("Hello, World!");

 writer.newLine();

 writer.write("Welcome to file writing in Java.");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

 Serialization in Java

Serialization is the process of converting an object into a byte stream, allowing you

to save the object's state to a file or send it over a network. Deserialization is the

reverse process, where the byte stream is converted back into a copy of the original

object. This mechanism is useful for persisting data and for communication in

distributed systems.

Key Concepts of Serialization

1. Serializable Interface:

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

3

o To make a class serializable, it must implement the java.io.Serializable

interface. This is a marker interface, which means it does not contain

any methods.

o All non-transient instance variables of the class are serialized by default.

2. transient Keyword:

o If you have certain fields in a class that you do not want to serialize, you

can declare them as transient. These fields will not be included in the

serialized representation of the object.

3. ObjectOutputStream and ObjectInputStream:

o ObjectOutputStream is used to serialize objects, while ObjectInputStream is

used to deserialize objects.

Example of Serialization and Deserialization

Here’s a complete example demonstrating serialization and deserialization in Java:

Step 1: Create a Serializable Class

import java.io.Serializable;

class Person implements Serializable {

 private static final long serialVersionUID = 1L;

 private String name;

 private int age;

 private transient String password;

 public Person(String name, int age, String password) {

 this.name = name;

 this.age = age;

 this.password = password;

 }

 public String getName() { return name; }

 public int getAge() { return age; }

 public String getPassword() { return password; }

 public void display() {

 System.out.println("Name: " + name + ", Age: " + age + ", Password: "

+ password);

 }

}

Step 2: Serialize the Object

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

4

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectOutputStream;

public class SerializationExample {

 public static void main(String[] args) {

 Person person = new Person("Ram", 30, "secret");

 try (FileOutputStream fileOut = new FileOutputStream("person.ser");

 ObjectOutputStream out = new ObjectOutputStream(fileOut)) {

 out.writeObject(person);

 System.out.println("Object has been serialized: " + person.getName());

 }

catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Output:

Object has been serialized: Ram

Step 3: Deserialize the Object

import java.io.FileInputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

public class DeserializationExample {

 public static void main(String[] args) {

 Person person = null;

 try (FileInputStream fileIn = new FileInputStream("person.ser");

 ObjectInputStream in = new ObjectInputStream(fileIn)) {

 person = (Person) in.readObject();

 System.out.println("Object has been deserialized:");

 person.display();

 } catch (IOException | ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

}

Output:

Object has been deserialized:

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

5

Name: Ram, Age: 30, Password: null

Explanation of the Example

1. Serializable Class: The Person class implements Serializable. The serialVersionUID is

a unique identifier for the class, which helps in version control during

deserialization. The password field is marked as transient, so it will not be

serialized.

2. Serialization:

o In the SerializationExample class, a Person object is created and serialized

into a file named person.ser using ObjectOutputStream.

3. Deserialization:

o In the DeserializationExample class, the object is deserialized from the file.

The password field will be null since it was marked as transient.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

6

 The Origins of Swing

Swing did not exist in the early days of Java. Rather, it was a response to deficiencies

present in Java’s original GUI subsystem: the Abstract Window Toolkit. The AWT

defines a basic set of controls, windows, and dialog boxes that support a usable, but

limited graphical interface. One reason for the limited nature of the AWT is that it

translates its various visual components into their corresponding, platform-specific

equivalents, or peers. This means that the look and feel of a component is defined by

the platform, not by Java. Because the AWT components use native code resources,

they are referred to as heavyweight. The use of native peers led to several problems.

First, because of variations between operating systems, a component might look, or

even act, differently on different platforms.

The solution was Swing. Introduced in 1997, Swing was included as part of the Java

Foundation Classes (JFC). Swing was initially available for use with Java 1.1 as a

separate library. However, beginning with Java 1.2, Swing (and the rest of the JFC)

was fully integrated into Java.

Swing Is Built on the AWT

Before moving on, it is necessary to make one important point: although Swing

eliminates a number of the limitations inherent in the AWT, Swing does not replace

it. Instead, Swing is built on the foundation of the AWT. This is why the AWT is still a

crucial part of Java. Swing also uses the same event handling mechanism as the AWT.

Therefore, a basic understanding of the AWT and of event handling is required to use

Swing.

Two Key Swing Features

As just explained, Swing was created to address the limitations present in the AWT. It

does this through two key features: lightweight components and a pluggable look

and feel. Together they provide an elegant, yet easy-to-use solution to the problems

of the AWT. More than anything else, it is these two features that define the essence

of Swing. Each is examined here.

Swing Components Are Lightweight With very few exceptions, Swing components

are lightweight. This means that they are written entirely in Java and do not map

directly to platform-specific peers. Thus, lightweight components are more efficient

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

7

and more flexible. Furthermore, because lightweight components do not translate

into native peers, the look and feel of each component is determined by Swing, not

by the underlying operating system. Separating out the look and feel provides a

significant advantage: it becomes possible to change the way that a component is

rendered without affecting any of its other aspects. In other words, it is possible to

“plug in” a new look and feel for any given component without creating any side

effects in the code that uses that component. Moreover, it becomes possible to

define entire sets of look-and-feels that represent different GUI styles. To use a

specific style, its look and feel is simply “plugged in.” Once this is done, all

components are automatically rendered using that style.

Pluggable look-and-feels offer several important advantages. It is possible to define

a look and feel that is consistent across all platforms. Conversely, it is possible to

create a look and feel that acts like a specific platform. For example, if you know that

an application will be running only in a Windows environment, it is possible to

specify the Windows look and feel. It is also possible to design a custom look and

feel. Finally, the look and feel can be changed dynamically at run time.

 The MVC Connection

In general, a visual component is a composite of three distinct aspects:

 The way that the component looks when rendered on the screen

 The way that the component reacts to the user

 The state information associated with the component

No matter what architecture is used to implement a component, it must implicitly

contain these three parts. Over the years, one component architecture has proven

itself to be exceptionally effective: Model-View-Controller, or MVC for short.

The MVC architecture is successful because each piece of the design corresponds to

an aspect of a component. In MVC terminology, the model corresponds to the state

information associated with the component. For example, in the case of a check box,

the model contains a field that indicates if the box is checked or unchecked. The view

determines how the component is displayed on the screen, including any aspects of

the view that are affected by the current state of the model. The controller

determines how the component reacts to the user. For example, when the user clicks

a check box, the controller reacts by changing the model to reflect the user’s choice

(checked or unchecked). This then results in the view being updated. By separating a

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

8

component into a model, a view, and a controller, the specific implementation of

each can be changed without affecting the other two. For instance, different view

implementations can render the same component in different ways without affecting

the model or the controller.

Although the MVC architecture and the principles behind it are conceptually sound,

the high level of separation between the view and the controller is not beneficial for

Swing components. Instead, Swing uses a modified version of MVC that combines

the view and the controller into a single logical entity called the UI delegate. For this

reason, Swing’s approach is called either the Model-Delegate architecture or the

Separable Model architecture. Therefore, although Swing’s component architecture is

based on MVC, it does not use a classical implementation of it.

Swing’s pluggable look and feel is made possible by its Model-Delegate architecture.

Because the view (look) and controller (feel) are separate from the model, the look

and feel can be changed without affecting how the component is used within a

program. Conversely, it is possible to customize the model without affecting the way

that the component appears on the screen or responds to user input.

To support the Model-Delegate architecture, most Swing components contain two

objects. The first represents the model. The second represents the UI delegate.

Models are defined by interfaces. For example, the model for a button is defined by

the ButtonModel interface. UI delegates are classes that inherit ComponentUI. For

example, the UI delegate for a button is ButtonUI. Normally, your programs will not

interact directly with the UI delegate.

 Components and Containers

A Swing GUI consists of two key items: components and containers. However, this

distinction is mostly conceptual because all containers are also components. The

difference between the two is found in their intended purpose: As the term is

commonly used, a component is an independent visual control, such as a push

button or slider. A container holds a group of components. Thus, a container is a

special type of component that is designed to hold other components. Furthermore,

in order for a component to be displayed, it must be held within a container. Thus, all

Swing GUIs will have at least one container. Because containers are components, a

container can also hold other containers. This enables Swing to define what is called

a containment hierarchy, at the top of which must be a top-level container.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
2

9

Let’s look a bit more closely at components and containers.

1. Components

In general, Swing components are derived from the JComponent class. (The only

exceptions to this are the four top-level containers, described in the next section.)

JComponent provides the functionality that is common to all components. For

example, JComponent supports the pluggable look and feel. JComponent inherits

the AWT classes Container and Component. Thus, a Swing component is built on and

compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package

javax.swing. The following table shows the class names for Swing components

(including those used as containers).

JApplet ,JButton ,JCheckBox, JCheckBoxMenuItem, JColorChooser, JComboBox,

JComponent, JDesktopPane, JDialog, JEditorPane, JFileChooser, JFormattedTextField,

JFrame, JInternalFrame, JLabel, JLayer, JLayeredPane, JList, JMenu, JMenuBar,

JMenuItem, JOptionPane, JPanel, JPasswordField, JPopupMenu, JProgressBar,

JRadioButton, JRadioButtonMenuItem, JRootPane, JScrollBar, JScrollPane, JSeparator,

JSlider, JSpinner, JSplitPane, JTabbedPane.

Notice that all component classes begin with the letter J. For example, the class for a

label is JLabel; the class for a push button is JButton; and the class for a scroll bar is

JScrollBar.

2. Containers

Swing defines two types of containers. The first are top-level containers: JFrame,

JApplet, JWindow, and JDialog. These containers do not inherit JComponent. They

do, however, inherit the AWT classes Component and Container. Unlike Swing’s other

components, which are lightweight, the top-level containers are heavyweight. This

makes the top-level containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment

hierarchy. A top-level container is not contained within any other container.

Furthermore, every containment hierarchy must begin with a top-level container. The

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

0

one most commonly used for applications is JFrame. The one used for applets is

JApplet.

The second type of containers supported by Swing are lightweight containers.

Lightweight containers do inherit JComponent. An example of a lightweight

container is JPanel, which is a general-purpose container. Lightweight containers are

often used to organize and manage groups of related components because a

lightweight container can be contained within another container. Thus, you can use

lightweight containers such as JPanel to create subgroups of related controls that are

contained within an outer container.

 Layout Manager in Java

In Java, graphical user interfaces (GUIs) play a vital role in creating interactive

applications. To design a visually appealing and organized interface, the choice of

layout manager becomes crucial. Layout managers define how components are

arranged within a container, such as a JFrame or JPanel. Java provides several layout

managers to suit various design needs. In this section, we will delve into the details of

the different types of layout managers available in Java, along with code examples

and explanations.

1. FlowLayout

FlowLayout is a simple layout manager that arranges components in a row, left to

right, wrapping to the next line as needed. It is ideal for scenarios where components

need to maintain their natural sizes and maintain a flow-like structure.

FlowLayoutExample.java

import javax.swing.*;

import java.awt.*;

public class FlowLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("FlowLayout Example");

 frame.setLayout(new FlowLayout());

 frame.add(new JButton("Button 1"));

 frame.add(new JButton("Button 2"));

 frame.add(new JButton("Button 3"));

 frame.pack();

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

1

 }

}

Output:

2. BorderLayout

BorderLayout divides the container into five regions: NORTH, SOUTH, EAST, WEST,

and CENTER. Components can be added to these regions, and they will occupy the

available space accordingly. This layout manager is suitable for creating interfaces

with distinct sections, such as a title bar, content area, and status bar.

BorderLayoutExample.java

import javax.swing.*;

import java.awt.*;

public class BorderLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("BorderLayout Example");

 frame.setLayout(new BorderLayout());

 frame.add(new JButton("North"), BorderLayout.NORTH);

 frame.add(new JButton("South"), BorderLayout.SOUTH);

 frame.add(new JButton("East"), BorderLayout.EAST);

 frame.add(new JButton("West"), BorderLayout.WEST);

 frame.add(new JButton("Center"), BorderLayout.CENTER);

 frame.pack();

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

}

Output:

3. GridLayout

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

2

GridLayout arranges components in a grid with a specified number of rows and

columns. Each cell in the grid can hold a component. This layout manager is ideal for

creating a uniform grid of components, such as a calculator or a game board.

GridLayoutExample.java

import javax.swing.*;

import java.awt.*;

public class GridLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("GridLayout Example");

 frame.setLayout(new GridLayout(3, 3));

 for (int i = 1; i <= 9; i++) {

 frame.add(new JButton("Button " + i));

 }

 frame.pack();

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

}

Output:

4. CardLayout

CardLayout allows components to be stacked on top of each other, like a deck of

cards. Only one component is visible at a time, and you can switch between

components using methods like next() and previous(). This layout is useful for

creating wizards or multi-step processes.

CardLayoutExample.java

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class CardLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("CardLayout Example");

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

3

 CardLayout cardLayout = new CardLayout();

 JPanel cardPanel = new JPanel(cardLayout);

 JButton button1 = new JButton("Card 1");

 JButton button2 = new JButton("Card 2");

 JButton button3 = new JButton("Card 3");

 cardPanel.add(button1, "Card 1");

 cardPanel.add(button2, "Card 2");

 cardPanel.add(button3, "Card 3");

 frame.add(cardPanel);

 frame.pack();

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 button1.addActionListener(e -> cardLayout.show(cardPanel, "Card

2"));

 button2.addActionListener(e -> cardLayout.show(cardPanel, "Card

3"));

 button3.addActionListener(e -> cardLayout.show(cardPanel, "Card

1"));

 }

}

Output:

5. GroupLayout

GroupLayout is a versatile and complex layout manager that provides precise control

over the positioning and sizing of components. It arranges components in a

hierarchical manner using groups. GroupLayout is commonly used in GUI builders

like the one in NetBeans IDE.

GroupLayoutExample.java

import javax.swing.*;

public class GroupLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("GroupLayout Example");

 JPanel panel = new JPanel();

 GroupLayout layout = new GroupLayout(panel);

 panel.setLayout(layout);

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

4

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 layout.setHorizontalGroup(layout.createSequentialGroup()

 .addComponent(button1)

 .addComponent(button2));

 layout.setVerticalGroup(layout.createParallelGroup()

 .addComponent(button1)

 .addComponent(button2));

 frame.add(panel);

 frame.pack();

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

}

Output:

6. GridBagLayout

GridBagLayout is a powerful layout manager that allows you to create complex

layouts by specifying constraints for each component. It arranges components in a

grid, but unlike GridLayout, it allows components to span multiple rows and columns

and have varying sizes.

GridBagLayoutExample.java

import javax.swing.*;

import java.awt.*;

public class GridBagLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("GridBagLayout Example");

 JPanel panel = new JPanel(new GridBagLayout());

 GridBagConstraints constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 constraints.gridx = 0;

 constraints.gridy = 0;

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

5

 panel.add(button1, constraints);

 constraints.gridx = 1;

 panel.add(button2, constraints);

 frame.add(panel);

 frame.pack();

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

}

Output:

 Event handling

Event handling in Swing is crucial for creating interactive applications. Java uses the

Delegation Event Model, which separates the source of events from the objects that

handle those events. Let's break down the key components of this model.

The Delegation Event Model

1. Events: An event is an occurrence that happens in the application (e.g., a

button click, mouse movement, key press).

2. Event Sources: These are the components that generate events. For instance, a

button or a text field can be an event source.

3. Event Listeners: These are interfaces that define methods to handle events. An

object must implement these interfaces to respond to specific events.

4. Event Classes: Java provides predefined classes for different types of events

(e.g., ActionEvent, MouseEvent, KeyEvent).

Handling Events

To handle an event, you typically follow these steps:

1. Register an Event Listener: Attach a listener to the event source.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

6

2. Implement Listener Methods: Define what happens when the event occurs by

implementing the necessary methods in the listener interface.

Example: Handling Button Clicks

import javax.swing.*;

import java.awt.event.*;

public class ButtonClickExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("Button Click Example");

 JButton button = new JButton("Click Me");

 // Adding action listener to the button

 button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 System.out.println("Button was clicked!");

 }

 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.add(button);

 frame.setSize(300, 200);

 frame.setVisible(true);

 }

}

Handling Mouse and Keyboard Events

1. Mouse Events: Handled using MouseListener and MouseMotionListener.

○ MouseListener: Handles mouse clicks, entry, exit, etc.

○ MouseMotionListener: Handles mouse movement.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

7

button.addMouseListener(new MouseAdapter() {

 @Override

 public void mouseClicked(MouseEvent e) {

 System.out.println("Mouse clicked!");

 }

});

2. Keyboard Events: Handled using KeyListener.

○ It detects key presses, releases, and typing.

JTextField textField = new JTextField();

textField.addKeyListener(new KeyAdapter() {

 @Override

 public void keyPressed(KeyEvent e) {

 System.out.println("Key pressed: " + e.getKeyChar());

 }

});

Adapter Classes

Adapter classes are abstract classes that implement the listener interfaces. They allow

you to override only the methods you're interested in, reducing boilerplate code.

For example, MouseAdapter provides default implementations for all methods in

MouseListener, so you can override just the ones you need.

Inner Classes

Inner classes can be used to define event listeners within the same class. This is

useful for accessing the outer class's members.

 Object Oriented Programming Using JAVA

PVV Durga PraSad Department of Computer Applications (AWDC KKD)

P
ag

e1
3

8

public class MyFrame extends JFrame {

 public MyFrame() {

 JButton button = new JButton("Click Me");

 button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 System.out.println("Button clicked in inner class!");

 }

 });

 add(button);

 }

}

Anonymous Inner Classes

Anonymous inner classes allow you to create a class on-the-fly, ideal for short,

single-use implementations. This reduces the need for creating a separate class file.

button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 System.out.println("Button clicked using anonymous inner class!");

 }

});

